Data Management in RFID Applications

Dan Lin* Hicham G. Elmongdi* Elisa Bertind Beng Chin Oot

! Department of Computer Science, Purdue University, USA
{l'i ndan, el nongui, bertino}@s. purdue. edu
2 Department of Computer Science, National University of SingapangaPore
00i bc@onp. nus. edu. sg

Abstract. Nowadays, RFID applications have attracted a great deal of interest
due to their increasing adoptions in supply chain management, logisticeand s
curity. They have posed many new challenges to existing underlying atsab
technologies, such as the requirements of supporting big volume dasarping

data transition path and handling new types of queries. In this paper, ave pr
pose an efficient method to manage RFID data. We explore and taketageaf

the containment relationships in the relational tables in order to suppaiaspe
queries in the RFID applications. The experimental evaluation conduactedh o
existing RDBMS demonstrates the efficiency of our method.

1 Introduction

Radio frequency identification (RFID) [6] has been arounddecades, and recently,
there has been greater push from governments for its adofationore efficient man-
ufacturing, logistics and supply-chain management, aral measure for security en-
forcement and weeding out counterfeiting. Take the suppbin management for ex-
ample (Figure 1), RFID enables accurate and real-time iimgalf inventory by com-
panies throughout an entire supply chain. Specificallyg dadred in RFID are captured
remotely via radio waves. Information from goods taggedn®EIDs can then be read
simultaneously using fixed or mobile readers rather thanireg the scanning of indi-
vidual bar code. Such a better supply chain visibility whie use of RFID also means
that loss of inventory will be minimized during shipment.dhesses are suggested to
use RFID for better inventory control since it may reduceesscinventories and free
up capital for other activities.

Unfortunately, traditional database cannot efficientlpmut these new applica-
tions. Tracking each individual item causes data input twaase tremendously, and
volume of data is enormous. As an example, Venture Develap@erporation [4] has
predicted that when tags are used at the item level, Walrapdrasarket will generate
around 7 terabytes of data every day. Though some compnetesibniques have been
proposed (e.g. [8]), none of them fully explore the spetyiadi the RFID data while
supporting online tracking.

For a better understanding of the characteristics of RFI,dansider the follow-
ing example of the supply-chain management. Suppose thersegseral warehouses
and stores. Products like T-shirts, milk packages are thggéh RFIDs and shipped

* Also affiliated with Alexandria University, Alexandria, Egypt.

CIEFOTSE
(MELTGTION:

lags REJUErS

-

- i"’
[

Entarprise
Resource
Planning

Local Server

Supply
Chain
Managemsant

L
R, =
o

Fig. 1. Supply-Chain Management

respectively from warehouses to stores by trucks. Duriegstiipment, products may
be reallocated or reorganized at some intermediate waselowll such information
is recorded in a central database system when productstpasgl a warehouse or a
store. In this scenario, suppose a type of T-shirts at a &meld out and a customer
wants to know when his order can be completed. To answer sqcdierg, the retailer
needs to check current status of the shipment. If he knows the database that this
type of T-shirts is now at a warehouse close to his store alids@on be sent to his
store, he can then estimate the arrival time for the custolext, let us examine a
more interesting but complicated situation. A retailer $iidat a box of milk packages
in his store is contaminated. He thus asks a query on the pa#itle ghipment: “which
place did the box of milk packages stay before arriving at toye®” If it is deemed
to be contaminated in a truck, an alerting query may be issuedoid more losses:
“where is the truck now and what goods are in it?” This recqgthe system to quickly
identify suspected trucks (which are possibly heading keiostores), and stop them
to prevent possible contamination that may happen in otbees The scenario would
have been more disastrous if the movement of goods or livimg$ causes infectious
diseases to spread (for example, the breakout of SARS iniAZi@03).

In this paper, we tackle the above problems specifically. Wersarize our contri-
butions as follows.

— We have explored the path and containment relationshipeerR~FID data and
developed an ER-model based on it. To the best of our knowleitigs the first
time to clearly identify such inherent data connections HilRapplications so that
they can be taken into account during the system design.

— We have proposed a real-time tracking system for applicatia supply-chain
management, manufacturing, logistics and delivery sesviBoth incremental up-
dates and online queries are supported.

— We have conducted an extensive experimental study. Thésemonstrate the
efficiency of our system compared with the traditional mdtho

The rest of the paper is organized as follows. Section 2 wevrelated work. Sec-
tion 3 presents our proposed ER-model and discusses giretiesRFID applications.

Section 4 proposes our approaches for the RFID data managefestion 5 reports
the experimental results. Finally, Section 6 gives the kasion.

2 Related Work

RFID technology has posed many new challenges to databasagement systems
[10,12]. Some IT companies are providing RFID platforms315; 6], through which
RFID data are acquired, filtered and normalized, and thepattifed to applications.
Thus high level RFID data modelling and management is up plicgiions. However
little research has been observed in this area.

Chawathe et al. [7] presented an overview of RFID data managefrom a high-
level perspective and introduced the idea of an online wareé but without providing
details at the level of data structure or algorithms. Latéang et al. [11] proposed a
model for RFID data management. This model shares many conpmiaciples with
the traditional models and hence is still inefficient in eg@nting the specialty of RFID
data. Hu et al. [9] proposed a bitmap data type to compactsesent a collection of
identifiers, which can significantly reduce the storage lozad. However, the bitmap
technique may not work well when the data in the same cluséenat continuous. As
also reported by the authors, this approach might not be d gandidate for some
applications like postal mail dispatch, because unlike ¢t sector, the items in these
applications do not lend themselves well to grouping baseal@mmon property, thus
precluding the use of bitmap for these cases.

Most recently, Gonzalez et al. [8] have proposed a new waisthg model that pre-
serves object transitions while providing significant coegsion and path-dependent
aggregates. The warehouse is constructed after all dataldie®n collected. Specifi-
cally, each object is registered in the database only ontleeagnd of its movement,
which is different from traditional method that recordseabject at each station dur-
ing its movement. This approach can largely reduce infaonatolume. However, it
may not be able to answer online queries on current statusjeéts, and hence it is not
applicable for real-time tracking problems.

3 RFID Data Modeling

In this section, we will first introduce a new ER-model for REID data management,
and then address the query types. Finally, we discuss angiexiample to present an
overview of functions that are achieved by our approach.

3.1 ER-Model and Query Types

In RFID applications, it is often the case that items taggét RFIDs move and stay
together during their movements or are regrouped at sona¢gidois [8]. Consequently,
queries on path and containment relationship naturalgeatn order to efficiently sup-
port these queries, we propose an ER-model that capturésirsigenal relationships
among RFID data.
In our ER-model, there are three main entitiestdmark meansandmoving units

Landmarks can be warehouses, delivery centers, super tmagte. Means can be
trucks, ships or airplanes. Moving units can be moving dbjégoods item), groups

Moving Unit)—

%

= o (o

Fig. 2. The ER-Model

of objects, or containers. Figure 2 shows the relationsaipsng the entities, where
moving units are transported to some landmarks by some nfeamstime ¢, to
time t.,,4. There exists a hierarchy of containment relationship t @bjectis con-
tained inGroup and Group is contained inContainer Another implicit containment
relationship is that of the containers and locations. Nb&g there may be multiple
levels in the hierarchy, though our example uses only treeeld.

Queries on RFID data can be categorized from different aspAccording to the
query time, there are three types of queries: current gugsiedictive queries and his-
torical queries. According to the query condition, querdas be classified into two
categories: ID-based queries and location-based quémi¢se ID-based queries, re-
trieval is based on given ID information. In the locatiorsed queries, retrieval is based
on given location information. According to the informatibeing queried, we identify
two types of queries: containment-relationship queriesmath-preserving queries. The
containment-relationship queridisd all objects contained in a given object at a higher
level. Thepath-preserving querieetrieve path information of one or more objects un-
der specified constraints. Queries in the last categooizatiostly reflect RFID data
characteristic, and hence we will address their processidgtails.

3.2 Anlllustrative Example

For illustration purpose, we adopt a simple example fronstigply-chain management
scenario, which will be used throughout the paper. As showkigure 3, there are two
locationsL1, Lo, three container§’;, Cs, C3, and three group§', G2, Gs. Each group
contains one objecty; containsOq, G5 containsO, andGs containsO3. During time
0 to 5, containerC’; stayed at locatiorl,; and contained two groupS; andGs. C4
was then shipped fromy; to Lo. After C; arrived atL,, its containment was changed,
where group&s was moved to containgrs,. At time 50, a new containe€’s arrived at
locationL;. Note that this example is only a part of the whole scenanithé following
discussion, we represent different entities by using ttizsr The detailed information
of these entities can be stored in a separate informatide, tabich will not affect the
efficiency of the proposed method.

Regarding this example, we will examine three represestatiieries. The first one
(denoted ag),) is “what objects are (were) in group (containerC) at timet?”, which
is a containment-relationship query. Seco@d,is “where has objecd (or groupG,

containerC) been to?”. Third(Q3 is “what objects (groups, containers) were shipped
from Ly to L, via L3 and L4 (L3 and L4 are intermediate warehouses) during tithe
tot?". The last two are both path-preserving queries.

4 RFID Data Management

Handling a large amount of RFID data as well as providing iefficquery services
poses new challenges to existing database techniques.Kothia point clear, we first
study a straightforward method — Time-Line approach, asduiis its limitations. After
that, we propose a more efficient approach — Multi-Table @gogin.

4.1 Time-Line Approach

The Time-Line approach is a naive method that stores altimétion in one table ac-
cording to the insertion time. The format of each row in thaleéas (T's, Te, LID,
CID,GID,OID, Means), whereT's is the arrival timee is the leaving timeLID,
CI1D,GID andO1D correspond to the IDs of the location, container, group dijead
respectively, and/eans is the way the moving units being transported. Figure 4 shows
how the data in the previous example is stored by using thigTiine approach. Once
there is an update on a field of the table, a new row is insdrerk, an update could be

a location update (e.g. a container reaches a new statioa);antainment update (e.qg.
reallocation of goods in a container, or an object beingvdedid).

The aforementioned three queries can all be answered byigatidn of projection,
selection and join operations. For examgle, (to find where has objec? been to) can
be answered as: SELEGIFROM Table WHERE OID =0O'.

The main disadvantage of this approach is the data redund@pecifically, if the
containment of a container (or a group) does not change érgtyuduring the trans-
portation, the Time-Line approach will store a lot of redantdinformation caused by
the containment relationships. As shown in the exampleuf€i@®), O, stayed in the
same containef’; and the groufs; when being transported from, to L,. The con-
tainment information 0, is unchanged but repeatedly stored in two records (1st and
3rd records in Figure 4). Such redundant information wilhecessarily increase the
table size and result in poor performance.

4.2 Multi-Table Approach
To alleviate the data redundancy problem and take advaofahe specialty of RFID
data, we develop a Multi-Table Approach based on our prap&&model. Our ap-

0:5 20-25 50-55 time
I I I
L1 L2 L1
| N |
c1 cL c2 (o]
N |
Gl G2 Gl G2 G3
[|
o1 02 01 O02 03

Fig. 3. An Example

Ts | Te | LID CID |GID |OID | Means

0 5 L1 C1 G1 O1 | Truckl
0 5 L1 C1 G2 02 | Truckl
20 |25 L2 C1 Gl O1| Truckl
20 | 25 L2 C2 G2 02 | Truck2
50 | 55 L1 C3 G3 O3 | Truck3

Fig. 4. Time-Line Approach

proach adopts the following assumptions. Each object ogllyrigs to one group, which

means we do not reallocate objects to other groups. Thisagalthe consideration of

the scenario like a box of milk packages, where a single mélkkage (object) usu-

ally stays at the same box (group) during its transportatimiike objects which are

at the lowest level of the containment relationship higrgrgroups can be reallocated
to other containers, containers can be reallocated to atheks, and so on. More-

over, groups and objects have their final destinations vaoiteainers and trucks can be
reused.

In the Multi-Table approach, there are two types of relatldables: theontainment
table and thepath table The containment table stores the information of contaimme
relationship and the path table captures the path infoomati moving units.

Figure 5 gives an overview of the containment tables in owstesy. There are
Location-Container (L-C for short) table, Container-Guo{C-G) table and Group-
Object (G-O) table. Each row of these tables consists ofast four fields.[T's, Te]
is the time interval during which one moving unit (el D) stays at the same place
(e.g.CID). Inthe L-C table, there is one more fieldMeans which indicates the trans-
portation means of the containers. Each table has corrdsmphistory tables. Records
are moved to history tables periodically (details will beeeed shortly).

Location—Container Table Container-Group Table Group-Object Table

Ts | Te | LID CID | Means Ts | Te | CID | GID Ts | Te | GID | OID

0 5 L1 C1 | Truckl 0 |25 C1 Gl 0 |25 | G1 o1

20 | 25 L2 C1 | Truckl 0 5 C1 G2 0 |25 | G2 02

20 | 25 L2 C2 | Truck2 20 | 25 Cc2 G2 50 | 55 | G3 03
50 |55 | L1 | C3|Truck3 50 |55 | C3 | G3 o 1

Fig. 5. Three Main Relational Tables of Multiple-Table Approach

GID LID-Time List
Gl <L1, 5>, <L2, 25>, ...
G2 <L2, 25>, ...

G3 <L1, 55>, ...

Fig. 6. An Example of GroupPath Table

Figure 6 shows the structure of the path table, i.e., the GRath table. This table
is a query-driven table, which is created during the queocessing. It stores part of
query results in order to facilitate new queries. Each rowhed table contains two
fields: a group IDGID and an LID-Time list. The LID-Time list records a sequence
of (location, Te) pairs, which indicates the location that the group hasadsétnd the
corresponding departure time.

In the rest of this section, we first present how to updaterinédion in the contain-
ment and path tables. Then we present the query algorithms.

Construction Consider the scenario at a station, where several consangve at time
T's. First, there will be an arrival scan that reports the cor@alDs to the system. Dur-
ing their stay, their containments will be scanned and cbeéck there is any change of
the containments, i.e., rearrangement of goods, the sysiitneceive new inventories
for the corresponding containers. Finally, when contarieave, a departure scan is
carried out and reports the departure tifteto the system. From the above scenario,
we identify three types of events: (i) Arrival event; (ii) @@inment arrangement event;
(iii) Departure event. The algorithm for each event is pnése as follows.

The arrival event provides the location information of @nérs, and hence only
the L-C Table is modified at this stage. Specifically, for eaghtainer, we will insert a
new recordT's, ., LID, CID,_) to the L-C Table. The two field&e and M eans will
be filled later when more information is received.

The containment arrangement event includes two sub-egentssponding to con-
tainers and groups respectively. We first elaborate the gemant of containment
change in containers. If there is a reallocation in containg Cs, .. ., C,, in the C-G
table, set thd@'e of groups that move out of the above containers to be theoelbn
time, and insert a set of new records of groups that move heset containers. The
event of containment arrangement of groups is triggeredupgcs arrival or delivery.

If objectsO4, O, ..., O, are new objects to the system, insert records{RéD, O,
Ts, -,) to the G-O table. If object® has been delivered, move its record from G-O
table to history G-O table and set tfie to be the delivery time.

Finally, we handle the departure event. The operation iplgimAe only need to
update the departure tin¥e of each departure container as well as its transportation
means (e.g. truck ID) in the L-C table.

Apart from the event handling, there is one more step foresysbptimization,
which is the construction of history tables. Every certdinet interval T;,,;, we will
check L-C and C-G tables to move records with older than current time to the his-
tory tables. Each history table has a global time intervat thdicates the earliest and
latest timestamps of its records. As time elapses, thereaxiaya set of history tables.
Here,T;,; is an application dependent parameter which controls thie &ize. It can
be set according to the speed of information grow. For exanifpipdates are frequent,
a small value off;,,; may benefit the query retrieval.

Query Processing We proceed to present algorithms for three representatieeiep
(in Section 3.1). Note that other queries are special cdtbe techniques used for these
three representative queries. To speed up the search inadehwe have a clustered
index on one type of ID and an unclustered index on the other.

For Q1 (containment-relationship query) on locatibn, the search starts from the
L-C table, where we obtain a list of containers at locatign Then we search the C-G
table to find the groups of these containers. Finally, weéenegrthe G-O table to get the
objects at locatiord.; .

For Q- (path-preserving query) on obje@t there are two main steps. The first step
is to find the group that objec® belongs to. According to the object status (delivered
or not), we can find its group ID in G-O table or history G-O &#hlThe second step
is to find the locations that this group has visited within the life time of objeaD.
Here, we may take advantage of the GrdRgeh table. If there exists a record with
respect to the grougr in the GroupPath table, we further check whether this record
contains sufficient information of objec?, i.e., whether the location list contains a
location withT'e larger than the object delivery time (or the latest update}i If yes,
we report locations in the list till the one wiffe larger than the query time. If we can
not find a corresponding record of groGfin the GroupPath table or the table does not
contain full path of objec©, we have to retrieve C-G table to obtain a set of containers
that groupG ever belonged to, and then retrieve L-C table to find the lonatof the
containers. Finally, we need to append the query resultet&GroupPath table.

The last queryQs is more complicated than previous ones since it requires-to r
trieve both containment and path information. The algamittonsists of following three
steps. First, we find all containers at locatibn during timet; to ¢, by searching the
L-C table. Second, we find all groups of these containers &ove shem in a group
list. The Third step is to check the Graigath table to see if the path of each group
in the group list contains a sequence of locatidhs, L3, L4, Lo). If yes, we report
the objects in the qualified groups with lifetime cover thegutime interval. Other-
wise, there could be two situations. One is that the path efgitoup as recorded in
the GroupPath table is different from the query path, which can belgafeined. The
other situation is that the path of the group is not completetthere is not a record of
this group. For this case, we need to find the locations of thepby retrieving all the
containers that it ever belonged to, and retrieving all dwations of these containers.
Then we check if the path of the group matches the query pathlly; we append the
group path information to the Groupath table for the use of future queries.

5 Performance Study

We implemented the proposed algorithms as stored procedukdS SQL Server 2005.
For all experiments, we use a Xenon 2.0GHz CPU with 1GB of RAMN& created
an application that simulates the movement of 18-wheeletaden warehouses and
stores. The simulated scenario is for 20 trucks and 80 wass® Each 18-wheeler
contains 8 containers; each container holds up to 8 boxels;®x contains 12 objects.
All containers, boxes, and objects are tagged with RFID&r lprival to a warehouse,
the 18-wheeler is filled to completion. Upon arrival to a stahe probability that a
container contains boxes for delivery is sette-p). The probability that a box in such a
container is to be delivered is aléb—p). Thus objects are delivered to stores according
to a geometric distribution with average numbers of hbfis whereq = 1 — (1 — p)2.
We set default value of this average to 6 hops. The paramefténgs simulation come
from real samples of 18-wheelers. The trip from a warehooigestore is uniform with
mean equal to a day and with a standard deviation of 20 minutes

Total Data Size (MB)

Q1 Response Time (sec)

w
al

2500 - - - ~ 25000 - - -
[Time-Line(no index) B [Time-Line(no index) ’g ---- Time-Line(no index)
2000 | @ Time-Line(index) £ 20000 { @ Time-Line(index) 2z 80 — - Time-Line(index) P
W Multi-Table 2 | Multi-Table E 25— Multi-Table e
1500 i 15000 = 20 - -
) £ -
1000 - F 10000 - B e SoerenTTIIIIITIT
2 S 10
500 4 2 5000 3 5
£ 2
0 4 ° 0 1 oo
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Days Days Days
(a) Storage Requirement (b) Total Update Time (c) Average Update Time
OTime-Line(no index) [Time-Line(index) O Time-Line(no index) @ Time-Line(index) ‘ OTime-Line(no index) [Time-Line(index)
W Multi-Table(no gtable) O Multi-T: W Multi-Table(no gtable) O Multi-T: W Multi-Table(no gtable) O Multi-T:
40 n = T = 3 40
Q Q
o 2
30 E 6 .g 30
F =
20 © 4 ® 20
c 2
o o
10 ﬂj g2 g 10
[i4 4
0 H]-* T T S 0 g 0
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Days Days Days
(d)Q1 (e) Q2 (H Qs

Fig. 7. Experimental Results

We implemented two variants of Time-Line approaches distished by having
index assistance or not, denoted as “Time-Line(no indexdl’ d@ime-Line(index)” re-
spectively. We also implemented two version of Multi-Tahfgproaches distinguished
by using the GrougPath table or not, denoted as “Multi-Table(no gtable)” aktlilti-
Table(gtable)” respectively. It is worth noting that theesof the GrougPath table is
ignorable compared to the total data size and the table iswvaltzed in the data update
process. Therefore we do not distinguish the two variantserexperiments regarding
storage space and update performance.

Storage Requirement The total data size that needs to be stored for an applicition
an important concern in database system design since a datalkize can save cost
for companies and may also benefit the system performancevdlaate the storage
efficiency, we examine the total data size stored by eachoapprevery 10 days. Fig-
ure 7(a) shows the results, in which the Multi-Table apphaggjuires the least storage
space than the Time-Line approaches. The main reason ithth@itme-Line approach
maintains more redundant information. For example, if aaioer contains 100 items,
each time the container reaches a station with the same itesigle, the Time-Line
approach needs to create 100 new records for all the itenmeseat the Multi-Table
approach only needs to create one new record corresporalthg tontainer itself. In
addition, Time-Line(index) needs more space than Time{rio index) to store the
indexes.

Update Performance Figure 7(b) plots the total update time every 10 days for each
approach. It is not surprising that the insertion time ofglbroaches increases as time
elapses due to the increased table sizes. Among all, theeutidae of Multi-Table
approach is the shortest because it has the smallest tabléasishown in Figure 7(a)).
The Time-Line(index) is the slowest approach with respettie insertion performance.
This is because Time-Line(index) needs to maintain itsxeddéor each update.

Figure 7(c) shows the average update time of each truck.ghatragain shows that
the Multi-Table approach is the best. Moreover, we also masthat both the Multi-
Table approach and Time-Line(no index) achieve steadypaence, while the Time-
Line(index) requires more time to maintain its indexes wiith growth of the data size.

Query Performance In the following experiments, we will evaluate three remes
tative queries. Figure 7(d) and (f) show the average regptin®e of Q; and Qs re-
spectively. We can observe that Multi-Table approachegaehhe best performance,
which possibly due to small data sizes that reduce the dateva and table join time.

Figure 7(e) shows the performance of quékry. We can see that the Time-Line(no
index) is extremely slow (more than 100 times slower), amddther three approaches
yield the similar performance. The slowness of the Timeelio index) is mainly be-
cause without any index support, it has to execute “bruteefojoin operations. The
Time-Line(index) is sometimes a little bit better than theltTable approaches, but
we should note that the Time-Line(index) requires much nspeee and longer update
time. Another interesting observation is that the Gr>h table can reduce the query
cost and its benefit increases as time passes (this effetittie dard to be seen from
the figure due to the large value of Time-Line approach).

6 Conclusion

In this paper, we study the important features of RFID appilins, such as the hierar-
chy of containment relationships and path preserving imgaperations. We propose
an expressive ER-model. Based on the ER-model, we developmesyet efficient
real-time tracking system for RFID data managements. Ow@neive experimental re-
sults prove the significant performance improvement aelidy our system compared
with a naive method.

References

. Developing auto-id solutions using sun java system rfid softwlatte:// java.sun.com/ de-
veloper/ technical-Articles/ Ecommerce/ rfid/ sjsrfid/ RFID.html
. Microsoft’s rfid ‘momentum’ includes middleware platform, appstp:// www.eweek.com/
article2/ 0,1759,1766050,00.asp
Oracle sensor edge server. http:// www.oracle.com/ technology/ products/ sen-
sor_edgeserver
Venture development corporation (vdbjtp://www.vdc-corp.com
Websphere rfid premises server. http://www-306.ibm.com/software/pervasive/
ws rfid_premisesserver
. C. Bornhovd, T. Lin, S. Haller, and J. Schaper. Integrating auiordata acquisition with
business processes - experiences with sap’s auto-id infrastrudtuferoc. VLDB pages
1182-1188, 2004.
. S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S. Savaaaging rfid data. In
Proc. VLDB pages 1189-1195, 2004.
8. H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing and amgymnassive rfid data
sets. InProc. ICDE, page 83, 2006.
9. Y. Hu, S. Sundara, T. Chorma, and J. Srinivasan. Supportihdpased item tracking appli-
cations in oracle dbms using a bitmap datatypePrioc. VLDB pages 1140-1151, 2005.
10. M. Lampe and C. Firkemeier. The smart box application modelPrat. Int. Conf. of
Pervasive Computin@004.
11. F. Wang and P. Liu. Temporal management of rfid dat@®rae. VLDB pages 1128-1139,

2005.
12. R. Want. The magic of rfidACM Queue?2(7):40-48, 2004.

o gp w N P

~

