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Abstract. Nowadays, RFID applications have attracted a great deal of interest
due to their increasing adoptions in supply chain management, logistics and se-
curity. They have posed many new challenges to existing underlying database
technologies, such as the requirements of supporting big volume data, preserving
data transition path and handling new types of queries. In this paper, we pro-
pose an efficient method to manage RFID data. We explore and take advantage of
the containment relationships in the relational tables in order to support special
queries in the RFID applications. The experimental evaluation conducted on an
existing RDBMS demonstrates the efficiency of our method.

1 Introduction

Radio frequency identification (RFID) [6] has been around for decades, and recently,
there has been greater push from governments for its adoption for more efficient man-
ufacturing, logistics and supply-chain management, and asa measure for security en-
forcement and weeding out counterfeiting. Take the supply-chain management for ex-
ample (Figure 1), RFID enables accurate and real-time tracking of inventory by com-
panies throughout an entire supply chain. Specifically, data stored in RFID are captured
remotely via radio waves. Information from goods tagged with RFIDs can then be read
simultaneously using fixed or mobile readers rather than requiring the scanning of indi-
vidual bar code. Such a better supply chain visibility with the use of RFID also means
that loss of inventory will be minimized during shipment. Businesses are suggested to
use RFID for better inventory control since it may reduce excess inventories and free
up capital for other activities.

Unfortunately, traditional database cannot efficiently support these new applica-
tions. Tracking each individual item causes data input to increase tremendously, and
volume of data is enormous. As an example, Venture Development Corporation [4] has
predicted that when tags are used at the item level, Walmart supermarket will generate
around 7 terabytes of data every day. Though some compression techniques have been
proposed (e.g. [8]), none of them fully explore the speciality of the RFID data while
supporting online tracking.

For a better understanding of the characteristics of RFID data, consider the follow-
ing example of the supply-chain management. Suppose there are several warehouses
and stores. Products like T-shirts, milk packages are tagged with RFIDs and shipped
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Fig. 1.Supply-Chain Management

respectively from warehouses to stores by trucks. During the shipment, products may
be reallocated or reorganized at some intermediate warehouses. All such information
is recorded in a central database system when products pass through a warehouse or a
store. In this scenario, suppose a type of T-shirts at a storeis sold out and a customer
wants to know when his order can be completed. To answer such aquery, the retailer
needs to check current status of the shipment. If he knows from the database that this
type of T-shirts is now at a warehouse close to his store and will soon be sent to his
store, he can then estimate the arrival time for the customer. Next, let us examine a
more interesting but complicated situation. A retailer finds that a box of milk packages
in his store is contaminated. He thus asks a query on the path of the shipment: “which
place did the box of milk packages stay before arriving at my store?” If it is deemed
to be contaminated in a truck, an alerting query may be issuedto avoid more losses:
“where is the truck now and what goods are in it?” This requires the system to quickly
identify suspected trucks (which are possibly heading to other stores), and stop them
to prevent possible contamination that may happen in other stores. The scenario would
have been more disastrous if the movement of goods or living things causes infectious
diseases to spread (for example, the breakout of SARS in Asiain 2003).

In this paper, we tackle the above problems specifically. We summarize our contri-
butions as follows.

– We have explored the path and containment relationships in the RFID data and
developed an ER-model based on it. To the best of our knowledge, it is the first
time to clearly identify such inherent data connections in RFID applications so that
they can be taken into account during the system design.

– We have proposed a real-time tracking system for applications in supply-chain
management, manufacturing, logistics and delivery services. Both incremental up-
dates and online queries are supported.

– We have conducted an extensive experimental study. The results demonstrate the
efficiency of our system compared with the traditional method.

The rest of the paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 presents our proposed ER-model and discusses queriesin the RFID applications.



Section 4 proposes our approaches for the RFID data management. Section 5 reports
the experimental results. Finally, Section 6 gives the conclusion.

2 Related Work

RFID technology has posed many new challenges to database management systems
[10, 12]. Some IT companies are providing RFID platforms [1–3, 5, 6], through which
RFID data are acquired, filtered and normalized, and then dispatched to applications.
Thus high level RFID data modelling and management is up to applications. However
little research has been observed in this area.

Chawathe et al. [7] presented an overview of RFID data management from a high-
level perspective and introduced the idea of an online warehouse but without providing
details at the level of data structure or algorithms. Later,Wang et al. [11] proposed a
model for RFID data management. This model shares many common principles with
the traditional models and hence is still inefficient in representing the specialty of RFID
data. Hu et al. [9] proposed a bitmap data type to compactly represent a collection of
identifiers, which can significantly reduce the storage overhead. However, the bitmap
technique may not work well when the data in the same cluster are not continuous. As
also reported by the authors, this approach might not be a good candidate for some
applications like postal mail dispatch, because unlike theretail sector, the items in these
applications do not lend themselves well to grouping based on a common property, thus
precluding the use of bitmap for these cases.

Most recently, Gonzalez et al. [8] have proposed a new warehousing model that pre-
serves object transitions while providing significant compression and path-dependent
aggregates. The warehouse is constructed after all data have been collected. Specifi-
cally, each object is registered in the database only once atthe end of its movement,
which is different from traditional method that records each object at each station dur-
ing its movement. This approach can largely reduce information volume. However, it
may not be able to answer online queries on current status of objects, and hence it is not
applicable for real-time tracking problems.

3 RFID Data Modeling

In this section, we will first introduce a new ER-model for theRFID data management,
and then address the query types. Finally, we discuss a running example to present an
overview of functions that are achieved by our approach.

3.1 ER-Model and Query Types

In RFID applications, it is often the case that items tagged with RFIDs move and stay
together during their movements or are regrouped at some locations [8]. Consequently,
queries on path and containment relationship naturally arise. In order to efficiently sup-
port these queries, we propose an ER-model that captures such internal relationships
among RFID data.

In our ER-model, there are three main entities:landmark, meansandmoving units.
Landmarks can be warehouses, delivery centers, super markets, etc. Means can be
trucks, ships or airplanes. Moving units can be moving objects (goods item), groups
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of objects, or containers. Figure 2 shows the relationshipsamong the entities, where
moving units are transported to some landmarks by some meansfrom time tstart to
time tend. There exists a hierarchy of containment relationship. That is Object is con-
tained inGroup andGroup is contained inContainer. Another implicit containment
relationship is that of the containers and locations. Note that there may be multiple
levels in the hierarchy, though our example uses only three levels.

Queries on RFID data can be categorized from different aspects. According to the
query time, there are three types of queries: current queries, predictive queries and his-
torical queries. According to the query condition, queriescan be classified into two
categories: ID-based queries and location-based queries.In the ID-based queries, re-
trieval is based on given ID information. In the location-based queries, retrieval is based
on given location information. According to the information being queried, we identify
two types of queries: containment-relationship queries and path-preserving queries. The
containment-relationship queriesfind all objects contained in a given object at a higher
level. Thepath-preserving queriesretrieve path information of one or more objects un-
der specified constraints. Queries in the last categorization mostly reflect RFID data
characteristic, and hence we will address their processingin details.

3.2 An Illustrative Example

For illustration purpose, we adopt a simple example from thesupply-chain management
scenario, which will be used throughout the paper. As shown in Figure 3, there are two
locationsL1, L2, three containersC1, C2, C3, and three groupsG1, G2, G3. Each group
contains one object:G1 containsO1, G2 containsO2 andG3 containsO3. During time
0 to 5, containerC1 stayed at locationL1 and contained two groupsG1 andG2. C1

was then shipped fromL1 to L2. After C1 arrived atL2, its containment was changed,
where groupG2 was moved to containerC2. At time 50, a new containerC3 arrived at
locationL1. Note that this example is only a part of the whole scenario. In the following
discussion, we represent different entities by using theirIDs. The detailed information
of these entities can be stored in a separate information table, which will not affect the
efficiency of the proposed method.

Regarding this example, we will examine three representative queries. The first one
(denoted asQ1) is “what objects are (were) in groupG (containerC) at timet?”, which
is a containment-relationship query. Second,Q2 is “where has objectO (or groupG,



containerC) been to?”. Third,Q3 is “what objects (groups, containers) were shipped
from L1 to L2 via L3 andL4 (L3 andL4 are intermediate warehouses) during timet1
to t2?”. The last two are both path-preserving queries.

4 RFID Data Management
Handling a large amount of RFID data as well as providing efficient query services
poses new challenges to existing database techniques. To make this point clear, we first
study a straightforward method – Time-Line approach, and discuss its limitations. After
that, we propose a more efficient approach – Multi-Table approach.

4.1 Time-Line Approach
The Time-Line approach is a naive method that stores all information in one table ac-
cording to the insertion time. The format of each row in the table is 〈Ts, Te, LID,
CID, GID, OID, Means〉, whereTs is the arrival time,Te is the leaving time,LID,
CID, GID andOID correspond to the IDs of the location, container, group and object
respectively, andMeans is the way the moving units being transported. Figure 4 shows
how the data in the previous example is stored by using this Time-Line approach. Once
there is an update on a field of the table, a new row is inserted.Here, an update could be
a location update (e.g. a container reaches a new station), or a containment update (e.g.
reallocation of goods in a container, or an object being delivered).

The aforementioned three queries can all be answered by combination of projection,
selection and join operations. For example,Q2 (to find where has objectO been to) can
be answered as: SELECT∗ FROM Table WHERE OID = ‘O’.

The main disadvantage of this approach is the data redundancy. Specifically, if the
containment of a container (or a group) does not change frequently during the trans-
portation, the Time-Line approach will store a lot of redundant information caused by
the containment relationships. As shown in the example (Figure 3),O1 stayed in the
same containerC1 and the groupG1 when being transported fromL1 to L2. The con-
tainment information ofO1 is unchanged but repeatedly stored in two records (1st and
3rd records in Figure 4). Such redundant information will unnecessarily increase the
table size and result in poor performance.

4.2 Multi-Table Approach
To alleviate the data redundancy problem and take advantageof the specialty of RFID
data, we develop a Multi-Table Approach based on our proposed ER-model. Our ap-
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proach adopts the following assumptions. Each object only belongs to one group, which
means we do not reallocate objects to other groups. This is due to the consideration of
the scenario like a box of milk packages, where a single milk package (object) usu-
ally stays at the same box (group) during its transportation. Unlike objects which are
at the lowest level of the containment relationship hierarchy, groups can be reallocated
to other containers, containers can be reallocated to othertrucks, and so on. More-
over, groups and objects have their final destinations whilecontainers and trucks can be
reused.

In the Multi-Table approach, there are two types of relational tables: thecontainment
tableand thepath table. The containment table stores the information of containment
relationship and the path table captures the path information of moving units.

Figure 5 gives an overview of the containment tables in our system. There are
Location-Container (L-C for short) table, Container-Group (C-G) table and Group-
Object (G-O) table. Each row of these tables consists of at least four fields.[Ts, Te]
is the time interval during which one moving unit (e.g.GID) stays at the same place
(e.g.CID). In the L-C table, there is one more field –Means, which indicates the trans-
portation means of the containers. Each table has corresponding history tables. Records
are moved to history tables periodically (details will be covered shortly).
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Figure 6 shows the structure of the path table, i.e., the Group Path table. This table
is a query-driven table, which is created during the query processing. It stores part of
query results in order to facilitate new queries. Each row ofthis table contains two
fields: a group IDGID and an LID-Time list. The LID-Time list records a sequence
of 〈location, Te〉 pairs, which indicates the location that the group has visited and the
corresponding departure time.

In the rest of this section, we first present how to update information in the contain-
ment and path tables. Then we present the query algorithms.

Construction Consider the scenario at a station, where several containers arrive at time
Ts. First, there will be an arrival scan that reports the container IDs to the system. Dur-
ing their stay, their containments will be scanned and checked. If there is any change of
the containments, i.e., rearrangement of goods, the systemwill receive new inventories
for the corresponding containers. Finally, when containers leave, a departure scan is
carried out and reports the departure timeTe to the system. From the above scenario,
we identify three types of events: (i) Arrival event; (ii) Containment arrangement event;
(iii) Departure event. The algorithm for each event is presented as follows.

The arrival event provides the location information of containers, and hence only
the L-C Table is modified at this stage. Specifically, for eachcontainer, we will insert a
new record〈Ts, , LID, CID, 〉 to the L-C Table. The two fieldsTe andMeans will
be filled later when more information is received.

The containment arrangement event includes two sub-eventscorresponding to con-
tainers and groups respectively. We first elaborate the management of containment
change in containers. If there is a reallocation in container C1, C2, . . ., Cn, in the C-G
table, set theTe of groups that move out of the above containers to be the reallocation
time, and insert a set of new records of groups that move into these containers. The
event of containment arrangement of groups is triggered by object arrival or delivery.
If objectsO1, O2, ...,Om are new objects to the system, insert records like〈GID, O1,
Ts, , 〉 to the G-O table. If objectsO has been delivered, move its record from G-O
table to history G-O table and set theTe to be the delivery time.

Finally, we handle the departure event. The operation is simple. We only need to
update the departure timeTe of each departure container as well as its transportation
means (e.g. truck ID) in the L-C table.

Apart from the event handling, there is one more step for system optimization,
which is the construction of history tables. Every certain time intervalTint, we will
check L-C and C-G tables to move records withTe older than current time to the his-
tory tables. Each history table has a global time interval that indicates the earliest and
latest timestamps of its records. As time elapses, there mayexist a set of history tables.
Here,Tint is an application dependent parameter which controls the table size. It can
be set according to the speed of information grow. For example, if updates are frequent,
a small value ofTint may benefit the query retrieval.

Query Processing We proceed to present algorithms for three representative queries
(in Section 3.1). Note that other queries are special cases of the techniques used for these
three representative queries. To speed up the search in eachtable, we have a clustered
index on one type of ID and an unclustered index on the other.



For Q1 (containment-relationship query) on locationL1, the search starts from the
L-C table, where we obtain a list of containers at locationL1. Then we search the C-G
table to find the groups of these containers. Finally, we retrieve the G-O table to get the
objects at locationL1.

ForQ2 (path-preserving query) on objectO, there are two main steps. The first step
is to find the group that objectO belongs to. According to the object status (delivered
or not), we can find its group ID in G-O table or history G-O tables. The second step
is to find the locations that this groupG has visited within the life time of objectO.
Here, we may take advantage of the GroupPath table. If there exists a record with
respect to the groupG in the GroupPath table, we further check whether this record
contains sufficient information of objectO, i.e., whether the location list contains a
location withTe larger than the object delivery time (or the latest update time). If yes,
we report locations in the list till the one withTe larger than the query time. If we can
not find a corresponding record of groupG in the GroupPath table or the table does not
contain full path of objectO, we have to retrieve C-G table to obtain a set of containers
that groupG ever belonged to, and then retrieve L-C table to find the locations of the
containers. Finally, we need to append the query results to the GroupPath table.

The last queryQ3 is more complicated than previous ones since it requires to re-
trieve both containment and path information. The algorithm consists of following three
steps. First, we find all containers at locationL1 during timet1 to t2 by searching the
L-C table. Second, we find all groups of these containers and store them in a group
list. The Third step is to check the GroupPath table to see if the path of each group
in the group list contains a sequence of locations〈L1, L3, L4, L2〉. If yes, we report
the objects in the qualified groups with lifetime cover the query time interval. Other-
wise, there could be two situations. One is that the path of the group as recorded in
the GroupPath table is different from the query path, which can be safely pruned. The
other situation is that the path of the group is not completedor there is not a record of
this group. For this case, we need to find the locations of the group by retrieving all the
containers that it ever belonged to, and retrieving all the locations of these containers.
Then we check if the path of the group matches the query path. Finally, we append the
group path information to the GroupPath table for the use of future queries.

5 Performance Study
We implemented the proposed algorithms as stored procedures in MS SQL Server 2005.
For all experiments, we use a Xenon 2.0GHz CPU with 1GB of RAM.We created
an application that simulates the movement of 18-wheelers between warehouses and
stores. The simulated scenario is for 20 trucks and 80 warehouses. Each 18-wheeler
contains 8 containers; each container holds up to 8 boxes; each box contains 12 objects.
All containers, boxes, and objects are tagged with RFIDs. Upon arrival to a warehouse,
the 18-wheeler is filled to completion. Upon arrival to a store, the probability that a
container contains boxes for delivery is set to(1−p). The probability that a box in such a
container is to be delivered is also(1−p). Thus objects are delivered to stores according
to a geometric distribution with average numbers of hops1/q, whereq = 1− (1− p)2.
We set default value of this average to 6 hops. The parametersof this simulation come
from real samples of 18-wheelers. The trip from a warehouse to a store is uniform with
mean equal to a day and with a standard deviation of 20 minutes.
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(b) Total Update Time
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(c) Average Update Time
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(d) Q1

0


2


4


6


8


10
 20
 30
 40
 50

Days


Q
2
 R

e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)


Time-Line(no index)
 Time-Line(index)

Multi-Table(no gtable)
 Multi-Table(gtable)


(e) Q2

0


10


20


30


40


10
 20
 30
 40
 50

Days


Q
3

 R
e

sp
o

n
se

 T
im

e
 (

se
c)




Time-Line(no index)
 Time-Line(index)

Multi-Table(no gtable)
 Multi-Table(gtable)


(f) Q3

Fig. 7.Experimental Results

We implemented two variants of Time-Line approaches distinguished by having
index assistance or not, denoted as “Time-Line(no index)” and “Time-Line(index)” re-
spectively. We also implemented two version of Multi-Tableapproaches distinguished
by using the GroupPath table or not, denoted as “Multi-Table(no gtable)” and “Multi-
Table(gtable)” respectively. It is worth noting that the size of the GroupPath table is
ignorable compared to the total data size and the table is notinvolved in the data update
process. Therefore we do not distinguish the two variants inthe experiments regarding
storage space and update performance.
Storage Requirement The total data size that needs to be stored for an applicationis
an important concern in database system design since a smalldata size can save cost
for companies and may also benefit the system performance. Toevaluate the storage
efficiency, we examine the total data size stored by each approach every 10 days. Fig-
ure 7(a) shows the results, in which the Multi-Table approach requires the least storage
space than the Time-Line approaches. The main reason is thatthe Time-Line approach
maintains more redundant information. For example, if a container contains 100 items,
each time the container reaches a station with the same itemsinside, the Time-Line
approach needs to create 100 new records for all the items, whereas the Multi-Table
approach only needs to create one new record corresponding to the container itself. In
addition, Time-Line(index) needs more space than Time-Line(no index) to store the
indexes.
Update Performance Figure 7(b) plots the total update time every 10 days for each
approach. It is not surprising that the insertion time of allapproaches increases as time
elapses due to the increased table sizes. Among all, the update time of Multi-Table
approach is the shortest because it has the smallest table size (as shown in Figure 7(a)).
The Time-Line(index) is the slowest approach with respect to the insertion performance.
This is because Time-Line(index) needs to maintain its indexes for each update.



Figure 7(c) shows the average update time of each truck. The result again shows that
the Multi-Table approach is the best. Moreover, we also observe that both the Multi-
Table approach and Time-Line(no index) achieve steady performance, while the Time-
Line(index) requires more time to maintain its indexes withthe growth of the data size.

Query Performance In the following experiments, we will evaluate three represen-
tative queries. Figure 7(d) and (f) show the average response time ofQ1 andQ3 re-
spectively. We can observe that Multi-Table approaches achieve the best performance,
which possibly due to small data sizes that reduce the data retrieval and table join time.

Figure 7(e) shows the performance of queryQ2. We can see that the Time-Line(no
index) is extremely slow (more than 100 times slower), and the other three approaches
yield the similar performance. The slowness of the Time-Line(no index) is mainly be-
cause without any index support, it has to execute “brute-force” join operations. The
Time-Line(index) is sometimes a little bit better than the Multi-Table approaches, but
we should note that the Time-Line(index) requires much morespace and longer update
time. Another interesting observation is that the GroupPath table can reduce the query
cost and its benefit increases as time passes (this effect is alittle hard to be seen from
the figure due to the large value of Time-Line approach).

6 Conclusion

In this paper, we study the important features of RFID applications, such as the hierar-
chy of containment relationships and path preserving in query operations. We propose
an expressive ER-model. Based on the ER-model, we develop a simple yet efficient
real-time tracking system for RFID data managements. Our extensive experimental re-
sults prove the significant performance improvement achieved by our system compared
with a naive method.
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