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Abstract—Two schemes for blind optical modulation format
identification (MFI), based on the singular value decomposition
(SVD) and Radon transform (RT) of the constellation diagrams,
are proposed. Constellation diagrams are obtained at optical signal-
to-noise ratios (OSNRs) ranging from 2 to 30 dB for eight differ-
ent modulation formats as images. The first scheme depends on
the utilization of feature vectors composed of the singular values
(SVs) of the obtained images, while the second scheme is based
on applying the RT and then getting the SVs. Different classifiers
are used and compared for the MFI task. The effect of varying
the number of samples on the accuracy of the classifiers is studied
for each modulation format. Simulation and experimental setups
have been provided to study the efficiency of the two schemes
at high bit rates for three dual-polarized modulation formats. A
decimation approach for the constellation diagrams is suggested to
reduce the SVD complexity, while maintaining high classification
accuracy. The obtained results reveal that the proposed schemes
can accurately be used to identify the optical modulation format
blindly with classification rates up to 100% even at low OSNR
values of 10 dBs.

Index Terms—Coherent detection, intelligent receiver, machine
learning classifiers, modulation format identification, radon
transform, singular value decomposition.
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1. INTRODUCTION

N FLEXIBLE and adaptive optical communication systems,

data rates and modulation formats are changed depending
on user demands and channel conditions [1]. Additionally,
enhancement of spectral efficiency is required. This can be
achieved by removing the end-to-end handshaking information
between the transmitter and the receiver. Therefore, identifying
the different modulation formats at the receiver has become
an issue that needs to be addressed. In this context, intelligent
coherent receivers with blind modulation format identification
(MFI) are exploited to solve this problem [2].

Several trends for blind optical MFI have been presented in
the literature. Bilal et al. [3] presented an approach for optical
modulation classification based on the peak-to-average power
ratio (PAPR) of the received data samples. They relied on the fact
that each format has different PAPR values at definite OSNRs.
This approach achieves high accuracy, but with prior knowledge
and large values of the OSNR. Adles et al. [4] presented an-
other approach based on the obtained histograms of the electric
field distributions. This approach provides high classification
rates, but it is complex in the computation process. Liu et al.
[5] proposed a method of using the power distribution of the
received signals for MFI. Although this method succeeded in
the recognition, different thresholds are required to be adjusted
for the parameters of interest.

Recently, machine learning technology has been utilized
in optical communication systems in several fields including
MEFI [6]. Khan et al. [7], [8] proposed a method of using the
amplitude histograms obtained from the constellation diagrams,
and then they used the artificial neural networks (ANNSs) [7]
and the deep neural networks (DNNs) [8] for MFI. These two
ways provide high accuracy but non of them could identify the
higher orders of the phase-shift keying (PSK) formats due to
the similarity of their amplitude histograms. Bo ef al. [9] used
the binary images resulting from the Voronoi diagrams for MFIL.
Although high accuracy is achieved, a large number of samples
is required for identifying 16-QAM modulation. Furthermore,
the constellation diagrams [10], [11] and eye diagrams [12] have
been used with convolutional neural networks (CNNs) for MFI.

In this paper, two blind optical MFI schemes based on SVD
of the constellation diagrams and their RTs are presented. A
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Fig. 1. Block diagram of the proposed SVD scheme.

coherent optical receiver is adopted to implement eight mod-
ulation formats (4/16/64/256-QAM and B/Q/8/16-PSK) with a
definite OSNR range and several numbers of samples. The SVs
of these diagrams are dependent on the type of the modulation
format. High identification rates among all formats are obtained
even at low OSNR values and small numbers of samples. Com-
plexity reduction is tested through decimation of constellation
diagrams for dual-polarized modulation formats. State of po-
larization and phase noise effects are considered on five dual-
polarized modulation formats for the MFI task. Furthermore,
a comparison study between the proposed MFI schemes and
the traditional MFI schemes is presented considering both the
number of samples and the OSNR as metrics.

The proposal of adopting SVD for MFI is based on the
following advantages [13]:

® The constellation diagrams and their shifted or rotated

versions have the same SVs.

® The SVs have a good stability even when slight variations

affect the constellation diagrams. These slight variations
may appear due to channel degradation effects.

The rest of this paper is organized as follows. The proposed
SVD-based MFI is described in Section II. Section 111 is devoted
to the mathematical representation of the RT for optical MFI.
The effects of phase noise and state of polarization on MFI task
are presented in Section IV. Section V provides a complexity
reduction approach for the classification process based on con-
stellation diagram decimation prior to estimation of the SVD. In
Section VI, the simulation setup is presented. The experimental
setup is provided in Section VII. The numerical results are
presented in Section VIII. Finally, the conclusion is given in
Section IX.

II. PROPOSED SVD MFI SCHEME

Fig. 1 shows the block diagram of the proposed SVD scheme
for optical MFI. As shown in this figure, there is a need for both
training and testing phases. In both phases, the number of used
samples is to be determined first. Next, constellation diagram
estimation is performed in the used OSNR range. Finally, the
features are extracted and machine learning classifiers are used.
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Fig.2. Samples of the used constellation diagrams for all modulation formats.
The OSNR changes from left to right in the range of 4 to 30 dB with 2-dB steps.

An adaptive optical modulation system is adopted comprising
8 modulation formats (4/16/64/256-QAM and B/Q/8/16-PSK).
The adaptation among modulation orders is dependent upon
the required data rates and OSNR limitations. The MFI step
is performed at the receiver before the DSP processes that are
modulation format dependent, like carrier phase recovery and
adaptive equalization.

The MFI is performed depending on the SVDs of the con-
stellation diagrams. So, there is a need to regularly estimate the
constellation diagrams from finite lengths of the received data.
The constellation diagram is used as an image. Specifically, it
is captured as a color image with a pixel size of 656 x 656 in
bmp format. This image is then converted to a gray-scale image
for the purpose of reducing the computational load. The SVD of
the gray-scale image produces three matrices, namely U, S and
V, as follows [13]:

I=USV7T, (D)

where U and V are the left and right singular vectors of the matrix
I representing the constellation diagram, respectively, and T’
denotes the transpose. The diagonal elements of the matrix S
constitute the feature vector.

In this scheme, training is performed on samples of constel-
lation diagrams of each modulation format acquired at different
OSNR levels. The diversity of OSNRs used in the training phase
allows OSNR-independent MFI. The testing phase begins with
a similar SVD process to extract the features.

Fig. 2 shows samples of the obtained constellation diagrams at
OSNRs ranging from 4 to 30 dB with 6000 samples. Different
types of classifiers are used, namely support vector machine
(SVM), K-nearest neighbor (KNN), and decision tree (DT) [2].
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Fig. 4. Samples of the constellation diagrams and their RTs at different PN levels.

III. RADON-BASED MFI SCHEME

Due to the characteristics of the RT to represent images
through different projections, it can be used to give sophisticated
representations of constellation diagrams, as shown in Fig. 3.

The RT is estimated by [14]:

R(t,0) = /jo /fo I(x,y)d [t — x cos(0) — ysin()] dxdy,
)

where I(x,y) is the constellation diagram image, = and y
represent the coordinate positions, R(t,0) is the RT image, ¢
is the normal distance from the origin to the line of projection,
0 is the projection angle, which is the angle between the normal
distance and the horizontal axis of an image and J(-) is the
Dirac delta function. The RT is determined by the summation
of all values in the matrix, taking into consideration the angle of
projection. In this paper, the projection angle is taken from 0° to
90° due to similarity properties of the RT. The proposed scheme

depends on performing the RT and SVD for feature extraction.
This hybrid scheme guarantees robustness to impairment effects.

Each constellation diagram has a definite number of points
at definite positions depending on the type of the modulation
format. These points are mapped to more distinctive curved lines
in the RT image. These lines help in enhancing the identification
accuracy.

IV. PHASE NOISE AND STATE OF POLARIZATION EFFECTS

Fig. 4(a) illustrates the constellation diagrams of five types of
modulation formats considered in this paper at different levels
of phase noise (PN). It is clear that the PN leads to some sort
of non-uniform rotation [15]. After 1 MHz PN, spreading of
constellation diagram points becomes more pronounced. This
effect leads to serious degradations in the constellation diagrams
of QPSK, 8-PSK and 16-PSK. Traditional pattern recognition
schemes may fail in this scenario. Even with the spreading
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Fig. 5.

of constellation diagram points at high PN levels in the form
of a continuous circle, there exist some regions on the circle
circumference at which density of points is high, while the rest
of the circumference is of low-density, which can be interpreted
as noise added to the original constellation diagram. The effect
of this noise on the SVs of a constellation diagram is expected
to be less than the effect on the constellation diagram itself.

The RTs of the constellation diagrams in Fig. 4(a) are shown
in Fig. 4(b). It is clear that even with high PN levels, the pattern
in the RT corresponding to a certain constellation diagram is
preserved to a large extent due to the robustness of the RT to
noise-like changes in the original constellation diagram image.
Application of the SVD and extraction of the SVs as features
from the RT with an efficient classifier are expected to yield high
classification accuracy.

Another important factor that affects the performance of the
optical communication system is the state of polarization (SoP)
that leads to polarization cross-talk [16]. Fig. 5(a) shows samples
of the constellation diagrams for five modulation formats at
different SoP values. Moreover, the RTs of these constellation
diagrams are given in Fig. 5(b). From these diagrams, it is clear
that there is a unique signature for each constellation diagram
even at high SoP values of 45°. The RT in Fig. 5(b) reveals that
the main pattern corresponding to each constellation diagram is
still distinguishable for each polarization. So, it is expected that
an efficient classifier with the proposed schemes can succeed in
the MFI task.

V. CONSTELLATION DIAGRAM DECIMATION FOR
COMPLEXITY REDUCTION

Decimation can be used to reduce the dimensions of the
constellation diagram to save the time of computation of the

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 3, FEBRUARY 1, 2020

16-PSK 16-QAM 64-QAM

~
o
=

Samples of the constellation diagrams and their RTs at different SoP values.

SVD. If the lexicographic ordering of the constellation diagram
image is performed to yield a 1-D vector f, the decimated
constellation diagram can be estimated as follows:

o
I
o

-

3)

where D is the decimation operator defined as D = D; ® D,
® is the Kronecker product and D is a 1-D filtering and down-
sampling operator for decimation by 2 [17].

1100 0
110011 0
Dl_i-- e . (4)
0000 -~ 1 1

For decimation by 2, the obtained image ¢(i, j) rearranged
from g in 2-D will be of dimensions m/2 x n/2 if the image
f(i,7) is of dimensions m x n. The complexity of SVD is of
O(m?n + n3) [18]. Hence, after decimation, the complexity
will be of O((2)%(%) + (2)%).

The complexity will be reduced due to the reduction in con-
stellation diagram size, which will provide less singular values
for the classification task. The original constellation diagram is
of size 656 x 656. Then, the decimated constellation diagram
will be of size 328 x 328 and 164 x 164 for decimation by 2
and 4, respectively. The main limitation is to keep the ability
to identify the modulation formats even with decimation oper-
ation. This process will be investigated by both simulation and
experimental results. The effect of reducing the image size on
the identification accuracy is studied even at low OSNR and
different phase noise levels.
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VI. SIMULATION SETUP

The simulation setup to produce the eight modulation for-
mats (4/16/64/256-QAM and B/Q/8/16-PSK) is implemented
using MATLAB. For each modulation format, 15 OSNR values
are considered at each determined length of samples. Fifty
constellation diagrams are collected at each OSNR for each
format.

OSNR (dB)
(b) SVM classifier

L 75 . . L
20 25 30 10 15 20 25 30

OSNR (dB)
(c) KNN classifier

Moreover, a simulation setup, as shown in Fig. 6, is built
based on Opti-System Version 12.0, and five modulation formats
are produced and tested: 4-QAM, 16-QAM, QPSK, 8-PSK, and
16-PSK. In all tests, data rate is fixed at 2.5 Gbps. A continuous
wave (CW) laser at the wavelength of 1550 nm and linewidth of
100 kHz is used to provide the optical carrier. A pseudo-random
binary sequence (PRBS) is used to drive the dual Mach-Zehnder
modulator (MZM) to generate the required modulation formats.
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The modulated signal is transmitted through a standard single-
mode fiber (SSMF) of length 240 km. The OSNR value is
controlled to cover the 2 to 30 dB range. An Erbium-doped
fiber amplifier (EDFA) is used to completely compensate for
the transmission loss. At the receiver side, the signal is passed
through the optical filter. A coherent detector, which has bal-
anced photodetection (BPD), is used with a local oscillator
(LO). The constellation diagrams have been collected using the
constellation diagram analyzer that needs the in-phase (I) and

(c) with KNN classifier

(d) with DT classifier
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Accuracy vs. number of samples and OSNR values for all PSK modulation formats with the SVD scheme. (a), (b), (¢) are for BPSK; (d), (e), (f) are for

quadrature (Q) components of the incoming signal. Then, the
obtained constellation diagrams are processed with the proposed
model to extract the dominant features using the SVD. Finally,
the classifiers are applied and the accuracy is determined.

The MFT s tested in the presence of PN and SoP effects for five
modulation formats (20 Gbps-DP-QPSK, 30 Gbps-DP-8-PSK,
40 Gbps-DP-16-PSK, 40 Gbps-DP-16-QAM and 60 Gbps-DP-
64-QAM) at a high level of OSNR of 30 dBs. The PN level is
varied from 1 kHz to 10 MHz and the SoP value is varied from
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Accuracy vs. OSNR for all modulation formats with both RT and SVD scheme and SVD scheme only for all used samples. (a), (b), (c) are with 6000

samples; (d), (e), () are with 4000 samples; (g), (h), (i) are with 1000 samples; and (j), (k), (1) are with 500 samples.

5° to 45° with 10° steps. The two proposed schemes are applied
and tested with the DT and KNN classifiers.

VII. EXPERIMENTAL SETUP

To ensure the feasibility of the two proposed (SVD and SVD
with RT) schemes in MFI for optical transmission systems, a
proof-of-concept experiment is conducted using the setup shown
in Fig. 7. A continuous-wave distributed feedback (DFB) fiber
laser (NKTPhotonics Koheras Adjustic) operating at 1550 nm
with an output power of 15 dBm is applied to a dual-polarization
Mach-Zehnder modulator (DP-MZM) (Fujitsu FTM7977HQA).

The DP-MZM has a switching voltage of 4.6 volts and an
insertion loss of 7 dBs. A four channel 64 GSa/s arbitrary wave-
form generator (AWG) (Keysight M9185 A) is used to generate
pseudo-random binary sequences (PRBS-11) that are coded into
multi-level IQ signals. In particular, the generated modulation
pool includes three DP-formats: DP-4-QAM, DP-16-QAM and
DP-64-QAM. The OSNR values are adjusted using Amonics
Erbium-doped fiber amplifier (AEDFA-C-18B-R) that generates
an amplified spontaneous emission noise (ASE) controlled by a
tunable optical attenuator (OA). A 50:50 optical coupler (OC)
is used to couple the signal and the ASE noise. The received
modulated optical signal is coherently detected and digitized
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using Keysight digital storage oscilloscope (DS0X93294 A).
The stored samples are offline-processed, where the feature
extraction using the proposed schemes is applied. Then, the
modulation formats are identified using the KNN or DT
classifiers.

The experimental work is compared with a simulation setup
at variable bit rates for three dual-polarized modulation formats:
20 Gbps-DP-4-QAM, 40 Gbps-DP-16-QAM and 60 Gbps-DP-
64-QAM. The PN is considered for the three formats, with values
of 1, 10, 100 and 1000 kHz. The OSNR is controlled to be
variable from 11 to 30 dB for the three modulation formats. The
front-end compensation, CD compensation and clock recovery
can be performed before the MFI step, as they are modulation
format independent DSP processes [5], [8], [12]. The used
three formats are square modulation, which leads to providing a
standard step size for the adaptive equalization. This makes the
proposed MFI usable before the adaptive equalization.

VIII. RESULTS AND DISCUSSION

Figs. 8 to 16 present the simulation and experimental results.
Different numbers of samples are used in the setup at various
OSNR values. At each observation with certain number of sam-
ples and OSNR value, fifty constellation diagrams are collected
for each format. Fig. 8 shows examples of the simulation results
of accuracy versus OSNR with the three selected classifiers
with 4000 samples. It is clear from the figure that the accuracy

of classification is different for each modulation. For the eight
used modulation formats, the DT and KNN classifiers are better
than the SVM classifier even with the higher order modulation
formats.

Fig. 9 clarifies the effect of using the proposed hybrid scheme
of RT and SVD on the classification rates compared to the SVD
only. The utilization of the RT enhances the accuracy for all mod-
ulation formats at low OSNR values even for higher-order mod-
ulation formats. It is obvious that the DT and KNN classifiers
achieve the highest accuracies with the RT and SVD scheme.
Additionally, 16-QAM, 64-QAM, 256-QAM and BPSK achieve
higher accuracy levels with all classifiers, but 4-QAM, QPSK,
8-PSK and 16-PSK achieve better accuracy levels with the DT
and KNN classifiers.

Furthermore, 3D graphs showing the variation of the accuracy
with both the number of samples and the OSNR are given in
Figs. 10 and 11 for all formats with the SVD scheme only.
Fig. 10 depicts the 3D graphs for all PSK modulation orders.
It shows that the accuracy level is above 98% at different
OSNR values with definite classifiers for PSK modulation. For
BPSK, there is a need for an OSNR value above 6 dBs with
all numbers of samples and all classifiers to achieve accuracy
levels above 98%. QPSK modulation achieves accuracy lev-
els above 98% beginning from 8 dBs with the DT and KNN
classifiers. For the SVM classifier, 10 dBs are required. To
achieve high classification rates for 8-PSK, 12 dBs are re-
quired with the DT classifier, 14 dBs with the KNN classifier
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Fig. 15.  Accuracy vs. OSNR for the three dual-polarized modulation formats for decimation by 2 and 4 with SVD scheme with 1000 samples. (a), (b) are at

1 kHz; (c), (d) are at 10 kHz; (e), (f) are at 100 kHz; and (g), (h) are at | MHz with the experimental and simulation constellation diagrams.

and 16 dBs with the SVM classifier. Additionally, obtaining
high accuracy levels above 98% for 16-PSK requires 14 dBs
with the KNN and SVM classifiers and 12 dBs with the DT
classifier.

Fig. 11 presents the 3D graphs for all used QAM modula-
tion formats. The accuracy is above 98% at definite values of
the OSNR for each classifier. For 4-QAM, a 10-dB OSNR is
required with all classifiers. Moreover, 16-QAM needs 16 dBs
with the SVM and KNN classifiers to achieve accuracy levels
above 99% and 14 dBs with the DT classifier for the same objec-
tive. For 64-QAM, 20 dBs are required with the DT classifier,
but 22 dBs are required with the KNN classifier and 24 dBs
with the SVM classifier to get accuracy levels above 99%. For
256-QAM, 20 dBs are required with the DT classifier, and 22 dBs
with the SVM and KNN classifiers to provide accuracy levels
above 99%.

Fig. 12 shows the accuracy versus OSNR for modulation
formats generated from Opti-System simulation. It is clear that
the accuracy of classification is better with all used classifiers,
especially with large numbers of samples, but with small num-
bers of samples, the DT and KNN classifiers are better than the
SVM classifier.

Fig. 13 presents a comparison between the SVD scheme
and the RT with SVD scheme for all numbers of samples.
As shown in the figure, the RT with SVD scheme enhances
the MFI performance at low OSNR values for higher-order
modulation formats down to 1000 samples. The performance
enhancement with the RT with SVD scheme is attributed to the
robustness of the RT and the stability of the SVD to constellation
diagram variations. In the generation of constellation diagrams,
the presence of impairments is possible. So, there is a need to
use impairment-robust decomposition techniques.



ELTAIEB et al.: EFFICIENT CLASSIFICATION OF OPTICAL MODULATION FORMATS BASED ON SVD AND RT

629

b e e
10 w Ba w
90
80
) <
< 70 {1 = 70 -
> >
8 8
3 g0 | [—— 16-0amsvD 3 ol [——1e-0amsvD
Q Q
2 seedfeees 16-QAM RT 2 seedeans 16-QAM RT
_8_ 64-QAM SVD —8— 64-QAM SVD
wee@p e 64-QAM RT wees{peee 64-QAM RT
50 | —— apsk svD 1 50 [ | —g— apPsk svD
+0 e QPSK AT ++2 e+ QPSK RT
—a— 8-PSK SVD —— 8-PSK SVD
40 | |+oees 8-PSK RT 1 40 | [+ 8-PSK RT
——fde— 16-PSK SVD e 16-PSK SVD
wooollers 16-PSK RT woosllees 16-PSK RT
30 . . 30 : L
10° 10' 102 10° 10* 10° 10! 102 10° 10*

Phase Noise (KHz)
(a) with DT classifier

60 -

50 [ |—+— 16-QAM SVD
sesegeens 16-QAM RT
64-QAM SVD
wuQpert 64-QAM RT
—3— QPSK SVD
e QPSK RT
= 8-PSK SVD
el 8-PSK RT
e 16-PSK SVD
wolheee 16-PSK RT

10 I L L I L I

Accuracy (%)

40 f

30

20 -

Phase Noise (KHz)
(b) with KNN classifier

50 [ | s 16-QAM SVD

«seedeans 16-QAM RT
64-QAM SVD
«sesQpee 64-QAM RT
—— QPSK SVD
s QPSK RT
= 8-PSK SVD
seliee 8-PSK RT
=i 16-PSK SVD
<o+ 16-PSK RT

Accuracy (%)

20

15 20 25 30 35 40
SoP (degree)

(c) with DT classifier

45

Fig. 16.

10 5 :
5 10 15

25 35 40
SoP (degree)
(d) with KNN classifier

20 30 45

Accuracy vs. PN or SoP for the five dual-polarized modulation formats with both RT and SVD scheme and SVD scheme only with 1000 samples. (a),

(b) are at all used PN values and (c), (d) are at all SoP values with the simulation constellation diagrams.

Finally, we present simulation and experimental results for the
20 Gbps-DP-4-QAM, 40 Gbps-DP-16-QAM and 60 Gbps-DP-
64-QAM formats with the DT and KNN classifiers. The obtained
results show that for the lower levels of PN (1 and 10 kHz), the
identification accuracy reaches 100% for the three formats at an
OSNR greater than 11 dBs.

Fig. 14 provides the accuracy versus OSNR for the two
proposed schemes. For DP-4-QAM, the RT shows the best
performance at all PN levels with both classifiers. Also, the
SVD scheme achieves a high accuracy level but with 1 MHz,
23 dBs for the KNN classifier and 24 dBs for the DT classifier
are required. For DP-16-QAM, 24 dBs and 26 dBs are required
with the DT and KNN classifiers, respectively, to provide 100%
accuracy levels at | MHz. For DP-64-QAM, 25 dBs and 26 dBs
are required with the KNN and DT classifiers to reach 100%
accuracy levels at 1 MHz, respectively.

Fig. 15 presents the accuracy with the decimation process for
the SVD scheme. It is shown that the variation in accuracy is not
significant up to 100 kHz, while at 1 MHz, higher OSNRs are
required to reach a 100% accuracy.

The 100% recognition accuracy achieved at relatively high
OSNRs is intuitively not surprising, because the RT images
have distinguishable shapes even at 1 MHz, as demonstrated in

Fig. 4 for OSNR = 30 dBs. Note that the phase-noise-induced
rotation is not a common rotation to all points in a constella-
tion diagram, but a symbol-by-symbol rotation, resulting in a
circle-like constellation diagram. Therefore, for high values of
PN, the proposed schemes may find difficulty to identify M-PSK
modulation formats. Fig. 4 shows the constellation diagrams and
their RTs at OSNR = 30 dBs revealing some degradations.

It is relevant to mention here that RT images have also dis-
tinguishable shapes in the presence of polarization cross-talk,
which leads to relatively high recognition accuracy. This can
be justified from the samples of RT images for polarization-
crosstalk presented in Fig. 5. Fig. 16 shows the accuracy versus
PN levels of 1 kHz, 10 kHz, 100 kHz, 1 MHz and 10 MHz and
polarization cross-talk with rotation angles of 5, 15, 25, 35 and
45°.

The recognition rate has been studied versus the level of
PN and SoP values with the two proposed schemes using
different types of classifiers. The results shown in Fig. 16
reveal that the proposed schemes with the selected classifiers
(DT and KNN) can resist the effects of PN and polarization
cross-talk.

A simple comparison is provided between the proposed
schemes and the previous works, depending on the number of
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TABLE I
REQUIRED OSNR AND NUMBER OF SAMPLES TO GET 100% ACCURACY

16-QAM BPSK

QPSK 8-PSK 16-PSK

Proposed SVD scheme 14 dBs with 2000 | 8 dBs with 1000

10 dBs with 500 14 dBswith 2000 | 16 dBs with 2000

Scheme in [5] 16.5 dBs with 10000

11.2 dBs with 10000

Scheme in [9] 22 dBs with 10000

12 dBs with 4000 22 dBs with 4000

Scheme in [20] 19.5 dBs with 5000 | 9 dBs with 1000

1

1.5 dBs with 3000 13 dBs with 3000 |16.5 dBs with 3000

Scheme in [21] 7 dBs with 400000 |7 dBs with 400000

7

dBs with 400000 | 7 dBs with 400000

samples and OSNR values that provide high accuracies of 100%.
We have used OSNR values of 12, 19, and 24 dBs for 4, 16, and
64-QAM, respectively, as in [19]. When compared to that of
[19], the proposed SVD scheme requires less samples for the
same modulation formats. Specifically, it requires 250, 500, and
250 samples for 4, 16, and 64-QAM, respectively, while 500,
5500, and 1000 samples are needed in [19], respectively.

Moreover, a comparison between previous schemes for blind
MFI and the proposed SVD scheme is given in Table I. It is shown
that there is a need for a trade-off between the required OSNR
value and the number of samples to achieve a 100% accuracy
level. The proposed schemes provide blind MFI at lower OSNR
values and less samples for all modulation formats compared to
the other schemes.

Specifically, for 16-PSK, the proposed SVD scheme needs
16 dBs with 2000 samples to reach a 100% accuracy, but in [20],
16.5 dBs are required with 3000 samples to achieve the same
accuracy level. In addition, the higher-order QAM modulation
formats are considered in the comparison. The proposed SVD
scheme requires an OSNR of 24 dBs with 4000 samples for 64-
QAM and 256-QAM to achieve a 100% classification accuracy,
while 24 dBs and 31 dBs with 10000 samples are required to
classify 64-QAM and 256-QAM, respectively, in [5].

IX. CONCLUSION

A new trend in optical MFI based on constellation diagram
analysis has been proposed and examined using simulation and
experimental demonstrations. This analysis is performed either
through the extraction of the SVs directly from the constellation
diagrams or through the extraction of the SVs from RTs of these
diagrams to constitute the feature vectors. The inherent stability
characteristics of SVs in the presence of matrix perturbations
are well exploited to yield high accuracy of MFI. In addition,
the outstanding characteristic of the RT that guarantees stability
to impairment effects is well exploited to yield high accuracy
levels, even with high-order modulation formats at low OSNR
values with as less samples as possible. The decimation process
provides a reduction in the complexity of SVD computations,
while keeping 100% accuracy levels. The efficiency of the two
proposed schemes with the PN and SoP effects has been verified
for the used modulation formats. Different classifiers have been
tested and compared for the MFI purpose. We can conclude that
the SVM, DT and KNN classifiers are excellent candidates to
build a robust MFI system based on the RT and the SVD.
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