Alexandria University

Faculty of Engineering
Electrical Engineering Department

Prof. M. El-Banna

Sheet (4): Analog ICs ELE322 MOS-Differential and BiCMOS Amplifiers

- 1. Consider the MOS differential pair shown in figure (1) with gate of Q2 grounded. Let $\mu_n C_{ox} = 20 \,\mu$ A/V², $V_t = 1V$, W/L = 20, and I = 16 μ A. Find v_{GS1} , v_{GS2} , v_s , and v_{G1} that correspond to the following distributions of the current I between Q_1 and Q_2 :
 - a- $i_{D1} = i_{D2} = 8 \mu A$
 - b- $i_{D1} = 12 \mu A$ and $i_{D2} = 4 \mu A$
 - c- $i_{D1} = 16 \mu A$ and $i_{D2} = 0 \mu A$ (Q₂ is just cuts off.)

Confirm that the value of v_{G1} obtained in (c) is the same as found using the equation given in lectures.

- 2. An NMOS differential amplifier utilizes a bias current of $8 \mu A$. The devices have $V_t = 1V$, $W = 60 \mu$ m, and $L = 6 \mu$ m, in a technology for for which $\mu_n C_{ox} = 20 \mu A/V^2$. Find V_{GS} , g_m , and the value of v_{id} for full current switching. To what value should the bias current be changed in order to double the value of v_{id} for full current switching.
- 3. Design the MOS differential amplifier of figure (1) to operate at $V_{GS} V_t = 0.2 \text{ V}$ and to provide a transconductance g_m of 0.1 mA/V. Specify the W/L ratios and the bias current. The technology available provides $V_t = 1V$ and $\mu_n C_{ov} = 20 \mu \text{ A/V}^2$.
- 4. An NMOS differential pair is to be used in an amplifier whose drain resistors are 100 k Ω \pm 1%. For the pair K = 100 μ A/V² and V_t = 1V. A decision is to be made concerning the bias current to be used, whether 100 μ A or 200 μ A. For differential output, contrast the differential gain and input offset voltage for the two possibilities.
- 5. An NMOS amplifier, whose designed operating point is with V_{GS} one-half volt above the nomimnal 1-V threshold, is suspected to have a viariability of V_t , K, and R_D (indepently) of $\pm 5\%$. What is the worstcase input offset voltage you would except to find? What is the major contribution to this total offset? If you used a variation of one of the drain resistors to reduce the output offset to zero and thereby compensate for uncertainties (including that of the other R_D), what percentage change from nominal value would you require? If by selection you reduced the contribution of the worst case of the offset by a factor of 10, what change in R_D would be needed?
- 6. For the simple MOS mirror shown in figure (2) the devices nominally have K = 100 μ A/V² and $V_t = 1V$. Measurement with $V_{DS2} = V_{DS1}$ and $I_{REF} = 1$ mA shows the output current to be 5% low. It is assumed that Q_2 differs from Q_1 in one or more ways. If the difference in current is all due to K_2 being different from K_1 , find what this difference must be. If, on the other hand, the difference in current is all due to V_{t2} being different from V_{t1} , find what this difference must be.

Figure (2)

- 7 What W/L ratio must a MOSFET have in order to have a g_m equal to that of a BJT when both are biased at a current I of $100 \,\mu\text{A}$. Comment on the results
- 8 If the parameter λ of a MOSFET is approximately inversely proportional to to the channel length L, how do r_0 and the intrinsic voltage gain change with L?
- 9 How does the thickness of the gate oxide affect the intrinsic gain of the common-source amplifier? Discuss the trade-offs that have to be considered in deciding on oxide thickness?

Hint: If not stated otherwise consider for BJTs: $V_A = 50V$ and $\beta = 100$; and for MOSFETs:

L = **2** μ **m**, $\lambda = 0.05V^{-1}$, $|V_t| = 1$ **V**, and $\mu_n C_{ox} = 20 \mu$ A/V².