
Chapter 3: Sequential Devices

• Sequential circuits, unlike combinational ones whose outputs depend only on the
present inputs, the outputs depend on present as well as past inputs. Sequential
circuits would require memory while combinational circuits which are memoryless.

• The building blocks ,main devices, used in designing and implementing sequential
circuits are Flop-Flops.

• In this chapter we will:

• Understand the design and working principles of Latches and Flip-Flops.
• Understand the importance and significance of sequential circuits in general.

Latch vs Register (Flip-Flop)

D

ck

QLatch
Level Sensitive

Flip-Flop
Edge Sensitive

Clk

D

Q

Clk

D

Q

RS Latch

𝑄ሺ𝑡 Δ 𝑡) =𝑅 𝑡 .[Q(t) + s(t)]
=𝑅 𝑡 ሾ𝑄 𝑡 𝑆 𝑡 ሿ

Let us assume the outputs of the forbidden
state to be zeros

Example: Consider a NAND gate of total delay
one unit, get z(t + Δt).

When x changes from 0 to 1 the output oscillates with a period 2 Δt.
When x changes from 1 to 0 the output becomes 1 after a delay of Δt.

Lumped
delay

Distributed delay

gate1 “t1” and gate2 “t2”

𝑡ଵ ൌ 𝑡ଶ = Δt

Timing diagram of the SR latch

Clocked SR flip-flop

• Dependable operation of FFs must include clocks

• The Clock input forces an action to take place only when the clock is present,
otherwise outputs are forced to remain unchanged

Maximum Clock Rate

 ௦ + ேௌ
ts : setup time, inputs have be there for some time
before triggering
th : hold time, after triggering
tp : propagation delay
tNS : Delay of Next-State Decoder

Example: Modify the SR flip-flop to accept “11” as a RESET state.

KM:

An alternative good way is to let the “11” state to make the FF toggle, JK flip-flop

The clock period has to be less than the delay of the FF

Pulse narrowing and edge-triggered FFs

True clock
pulse

Inverted delayed
clock pulse

Needed for edge-
triggered FFs

Locates the leading edge of the
clock

Example:Obtain the timing diagram for the sequential circuit shown for at least
six clock cycles. Assume that Q1(0) Q2(0) = 00

J1 = K1 = Q2

J2 = K2 = 𝑄1

Obtain the response of the shown circuit, where each of the gates is assumed to have
1 unit of gate delay. The input x remains high for a duration longer than 5 units.

Locates the trailing edge of
the clock

The memory circuit of sequential circuits is composed mainly of flip-flops.

State diagram

State 0 State 1

Transition path
Conditions (inputs) /outputs

State diagrams of flip-flops

4-bit parallel (ripple) adder

n-bit serial adder implemented sequentially by one full adder,
n-bit register and a flip-flop

Chapter 4: Design of Synchronous
Sequential Circuits

By the end of this chapter we should be able to:

Differentiate between Mealy and Moore finite-state
machines

Obtain a state diagram for a sequential circuit design

Follow the different design steps to realize the
synchronous sequential machine

State Diagram and State Table

Present
state
PS

Next state NS, outputs

X = 0 X = 1

A B, 0 A, 0

B C,1 A,0

C A, 0 B,0

A

C

B

x/0

𝑥/0

x/0

x/0

𝑥/0

𝑥/1

Mealy and Moore machines

PS

PS

PS
NS

PS

PS

NS

Outputs depend on both primary
inputs and the present state

Outputs depend only on the
present state

State Diagram and State Table

Example: Obtain the state diagram of a controller for a serial machine
that performs the 2’s complement operation .

Example: Obtain the state table for synchronous sequential
machine that detects a 01 sequence. The detection of sequence
sets the output, Z=1, which is reset only by a 00 input sequence.

Example: Obtain the Moore equivalent
state table for the Mealy machine

Eliminating Redundant States

Are any two states equivalent? So, do we have any
redundant state?

Equivalent States:

Have the same output

Make the same transition

A B C D E F

B

C

D

E

F

G

AB

EF

CG

CF

CE

ADBD

ADCE
AB
EG

AD
CF

AB
CF

AD
CE

BD
CE

BD
EG

BD
CG

AB
CG

AD
EF

AD
CE

AB
CE

AB
FG

Implication Table

Implication Table

F

E

D

C

B

A

(FG)

(EFG)

(EFG)

(EFG)

(EFG)

(AB)(EFG)

(AB)(C)(D)(EFG)

Partition Table

Reduced State Diagram and State Table

(AB)(C)(D)(EFG)

n: FFs
m: States
𝑚 2

State Transition Table

A = 00, C = 01, D = 11, and E = 10

00 01 11 10

0 0 1 0

0 0 1 0

Q1Q2
X
0
1

00 01 11 10

0_ 1_ _0 _1

0_ 0_ _0 _0

00 01 11 10

0_ _0 _0 0_

1_ _0 _1 0_

Q1Q2
X
0
1

Q1Q2
X
0
1

Z, output
Z = Q1Q2

Excitation Maps and Design Equations

J1K1
J1 = 𝑥𝑄ଶ
K1 = 𝑥𝑄ଶ

J2K2

J2 = 𝑥𝑄ଵ
K2 = x𝑄ଵ

J2

K2

Q2

Q2

J1

K1

Q1

Q1

Z, output
Z = Q1Q2

J1K1
J1 = 𝑥𝑄ଶ
K1 = 𝑥𝑄ଶ

J2K2

J2 = 𝑥𝑄ଵ
K2 = x𝑄ଵ

Hardware Implementation

Example: Find the HW implementation of the FSM whose state transition
table is given below

Hardware Implementation

Design Algorithm

Chapter 5: Introduction to Counters
and Registers

 Digital Systems usually have two main units:

 Counters:

 Synchronous

 Asynchronous

 Registers:

 Serial

 Parallel

REGISTERS and logic circuits A unit for data manipulation

 A second unit for regulating events of the first unit COUNTERS

Synchronous Binary Counters

Single-bit counter J = K = 1(0, 1, 0, 1,….)

Two-bit counter (00, 01, 10, 11, 00,……)
J1 = K1 = 1
J2 = K2 = Q1

Likewise for three-bit counter
J1 = K1 = 1
J2 = K2 = Q1
J3 = K3 = Q2Q1

For n-bit counter

J1 = K1 = 1
J2 = K2 = Q1
J3 = K3 = Q2Q1

Design a three-bit counter

Delay and fan-in problems

 Delay is the same for all stages
 Fan-in problem

 Delay increases with stages
 Fan-in is always two.

Standard n-bit up counter

Up Down-Counter

E = 1 for up counting, and E = 0 for down counting

E = 1 for up counting, and E = 0 for down counting

BCD Counter

From a regular 4-bit counter the
BCD one Can be thought of as such:

1001 should switch to
0000 and not to
1010

1
3
4
6
0

𝐽ଵ ൌ 𝑄ଷ, 𝐾ଵ ൌ 𝑄ଶ
𝐽ଶ ൌ 𝑄ଵ 𝑄ଷ 𝐾ଶ = 1

 𝐽ଷ ൌ 𝐾ଷ ൌ 𝑄ଶ

0, 1, 3, 4, 6, 0, …………..

00 01 11 10

0 0 - - 0
1 1 - - 1

Q2Q1

Q3

00 01 11 10

0 - - 1 -
1 - - 1 -

Q2Q1

Q3

00 01 11 10

0 1 - - -
1 1 - - -

00 01 11 10

0 - - 0 1
1 - - 1 0

00 01 11 10

0 0 - 1 1
1 - - - -

00 01 11 10

0 - - - -
1 1 - 1 0

J1 J2 J3

K1 K2 K3

Hardware Implementation

Asynchronous Binary Counters

𝑓௫

𝑓௫/2
𝑓௫/4

𝑓௫/8
𝑓௫/16

The counter does no go through the transition
1111→ 𝟎𝟎𝟎𝟎.
Instead: 1111→ 1110 →1100 → 1000 → 𝟎𝟎𝟎𝟎

Total delay for n-bit counter
is ntf

Problems:

 Forced regular binary count
 Speed

BCD Asynchronous Counter

1010 count resets
the counter

Integrated Circuit Counter

Two 4-bit IC counters connected to form
an 8-bit counterQD2QC2QB2QA2 QD1QC1QB1QA1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0

.

.
Carry out = 1
E = 1

The END

The Basic Shift Reregister

 LSBs are lost and MSBs are replaced with ones
Shift-right register

 LSBs replace MSBs
Circulate-right register

 MSBs replace LSBs
Circulate-left register

 Shift left one bit = multiply by 2

 Shift right one bit = divide by 2

Shift-right register Serial-in Serial-out

Let it go then HOLD

D FFs

JK FFs

At each clock edge
Ds are right-shifted
to Qs

At each clock edge
JKs are right-shifting
0 or 1 to Qs

Shift-left serial-in serial-out register

b0 b1b2…….
b0

SLE = 1, shift left

SLE = 0, stores shifted bits

Q0

Sigle register used for both serial-right and serial-left shifts

SRE SLE action
0 0 FFs reset

0 1 Shift-left

1 0 Shift-right

1 1 never

Hold Action
0 Shifts normally
1 Restores old

values

3-bit parallel in serial out shift register

E Action
1 Data loaded

0 Right-shift

Hold Action

0 Load or shift

1 Restores

4-bit Serial in Parallel out Shift Register

4-bit Parallel in Parallel out Shift Register

Load Action
1 Parallel

in/out
0 Serial

in/out

Universal Shift Register

Load Action
0 Shift-right

serial in/out
1 Parallel

i / t

Wired shift-left register

Chapter 5: Design of Asynchronous
Sequential Circuits

Pulse-Mode Circuits:

No clock for state transitions.

Just input pulses, Key boards and Vending machines

No overlapping pulses

Looks like synchronous without a clock

Conditions for perfect circuit operation

1. Simultaneous input pulses on two or more lines are
forbidden. Interval between pulses is large enough for
system to return to a stable state.

2. Pulse widths must be sufficient to allow the
components to respond to them.

As long as the previously stated two conditions are met the design of
asynchronous circuits will be similar to the synchronous ones

An example of three
nonoverlapping input pulses

Design Algorithm

1. Get the state diagram. For n-inputs there be
n transition paths leaving each of the sates.

2. Remove redundancies.
3. Assign states and generate state transition

table.
4. Get the excitation maps and write down the

excitation equations.
5. Draw the circuit diagram.

x1

x2

x3

Example: Design a circuit that
receives two inputs x1 and x2
and gives an output coincident
with the third consecutive x2
pulse following at least one x1
pulse.

A B

D C

x2

x1
x1

x1

x1

x2

x2

X2,zForbidden pulses: x1x2 = 11

No pulses have occured x1x2 = 00

Useful pulses x1x2 = 10 and x1x2 = 01

,
PS

Ns,z

x2 x1

A A B

B C B

C D B

D A,z B

PS
Q1Q2

Ns,z

X2
(01)

X1
(10)

00 00 01

01 11 01

11 10 01

10 00,z 01

Excitation maps:
T FFs are assumed

Q1Q2 x1 x2

00 0 0

01 0 1

11 1 0

10 1 1

T1ൌ 𝑥1𝑄1 𝑥2ሺ𝑄1⊕ 𝑄2ሻ

Q1Q2 x1 x2

00 1 0

01 0 0

11 0 1

10 1 0

T2ൌ 𝑥1𝑄2 𝑥2𝑄1𝑄2

Q1Q2 x1 x2

00 0 0

01 0 0

11 0 0

10 0 1

zൌ 𝑥2𝑄1𝑄2

PS
Q1Q2

Ns,z

X2
(01)

X1
(10)

00 00 01

01 11 01

11 10 01

10 00,z 01

Timing diagram of Negative-edge triggered T FFs

X1

X2

Q1

Q2

z

T1ൌ 𝑥1𝑄1 𝑥2ሺ𝑄1⊕ 𝑄2ሻ T2ൌ 𝑥1𝑄2 𝑥2𝑄1𝑄2 zൌ 𝑥2𝑄1𝑄2

The HW implementation of the excitation equations

Example 2:
Reset

Implication table

No redundance states

Arbitrary state assignment

A=000
B=001
C=010
D=100
E=101
F=110 State Transition Table

HW Implementation

Example 3

The equations of the states and the
output are easily written as:

	Lecture_1
	Lecture_2
	Lecture_3
	Lecture_4
	Lecture_5
	Lecture_6
	Lecture_7

