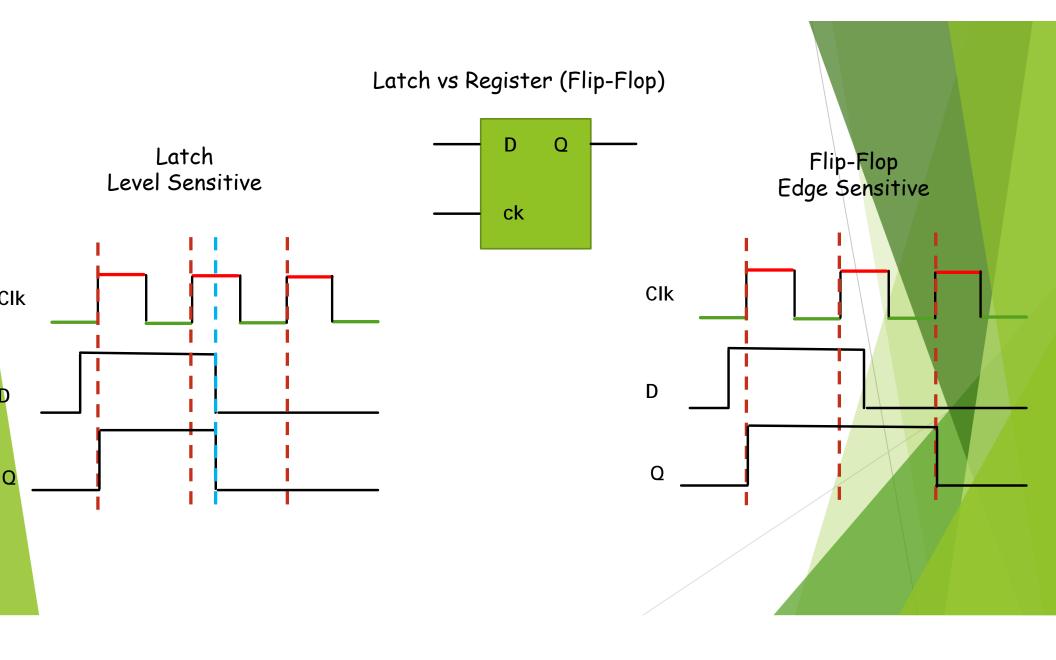
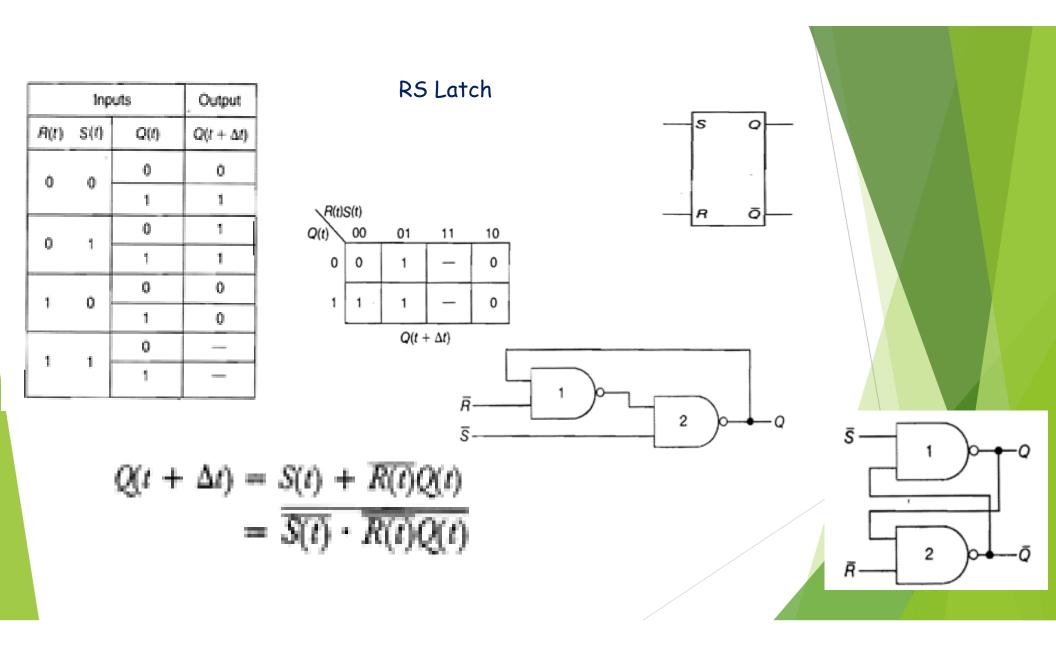
Chapter 3: Sequential Devices

- Sequential circuits, unlike combinational ones whose outputs depend only on the present inputs, the outputs depend on present as well as past inputs. Sequential circuits would require memory while combinational circuits which are memoryless.
- The building blocks , main devices, used in designing and implementing sequential circuits are Flop-Flops.

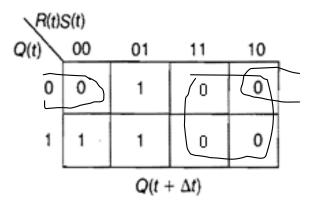
• In this chapter we will:

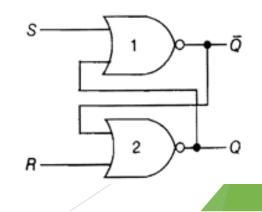
- Understand the design and working principles of Latches and Flip-Flops.
- Understand the importance and significance of sequential circuits in general.



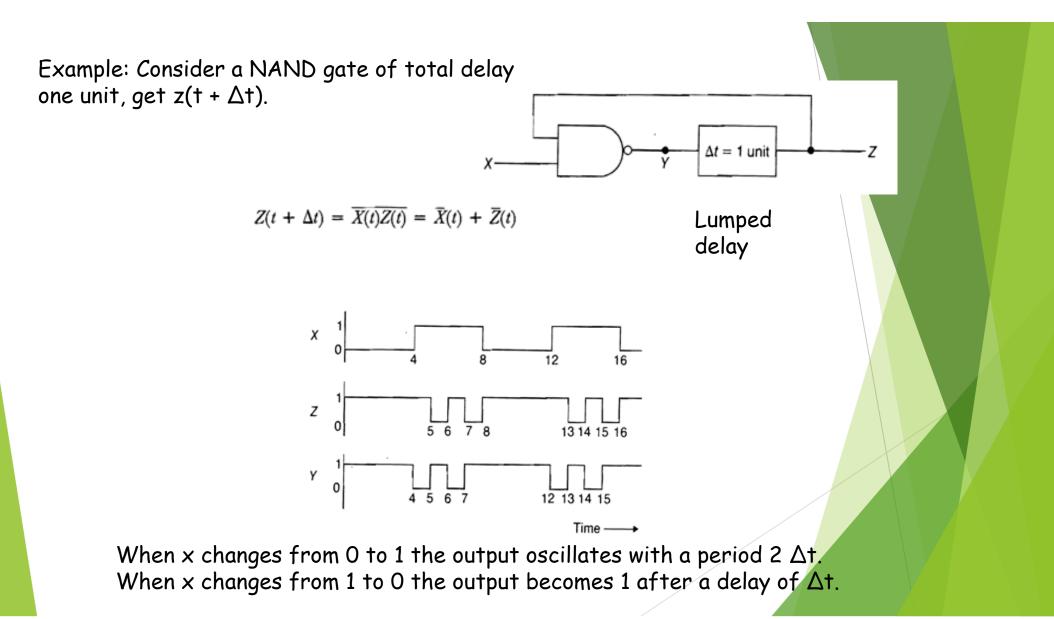


Let us assume the outputs of the forbidden state to be zeros





$$Q(t + \Delta t) = \overline{R(t)} [Q(t) + s(t)]$$
$$= \overline{R(t)} + \overline{[Q(t) + S(t)]}$$



Distributed delay

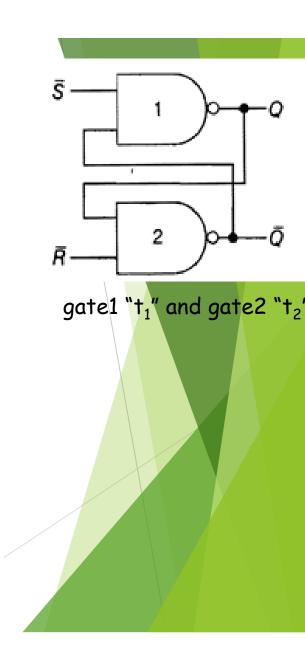
$$Q(t + t_1) = \overline{S(t) \cdot Q(t)} = S(t) + Q(t)$$

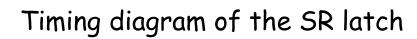
$$\overline{Q}(t + t_2) = \overline{R(t) \cdot Q(t)} = R(t) + \overline{Q}(t)$$

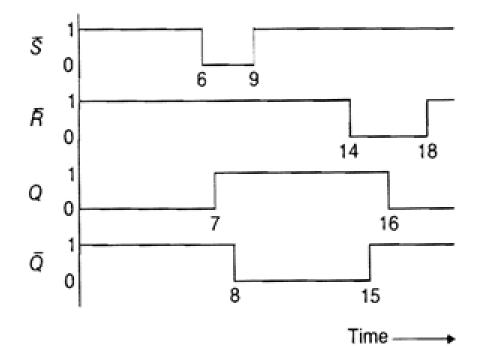
$$\overline{Q}(t + t_1 + t_2) = \overline{R(t + t_1) \cdot Q(t + t_1)}$$
$$= \overline{R(t + t_1) [S(t) + Q(t)]}$$
$$Q(t + t_1 + t_2) = \overline{R}(t + t_1)[S(t) + Q(t)]$$

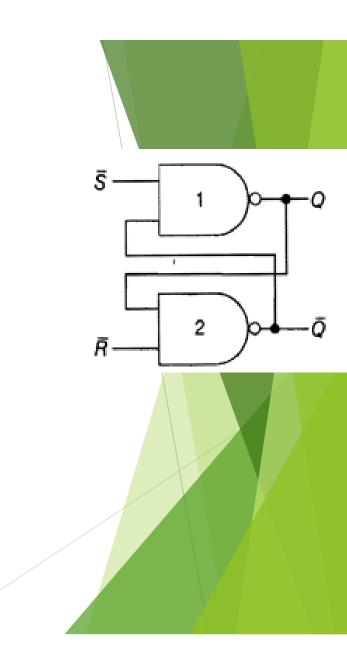
$$t_1 = t_2 = \Delta t$$

$$Q(t + \Delta t) = \overline{R} \left(t + \frac{\Delta t}{2} \right) [S(t) + Q(t)]$$





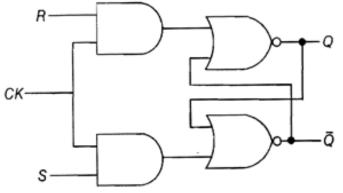


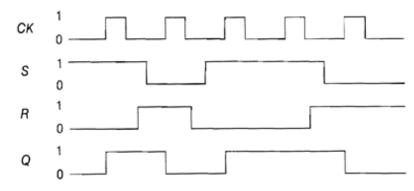


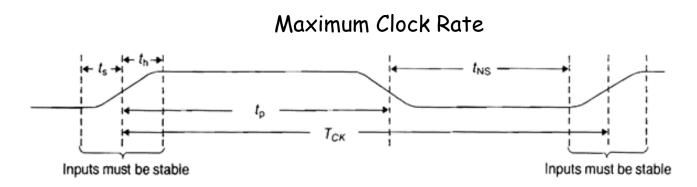
Clocked SR flip-flop

- Dependable operation of FFs must include clocks
- The Clock input forces an action to take place only when the clock is present, otherwise outputs are forced to remain unchanaed

	Inputs			Out	Outputs			
CK(t)	S(t)	R(t)	Mode	$Q(t + \Delta t)$	$\overline{Q}(t + \Delta t)$			
0		-	No action	Q(t)	$\overline{Q}(t)$			
л	0	0	Hold	Q(t)	$\overline{Q}(t)$			
л	0	1	Reset	0	1			
л	1	0	Set	1	0			
л	1	1	Invalid	-	-			







$$T_{ck} \geq t_s + t_p + t_{NS}$$

t_s : setup time, inputs have be there for some time before triggering

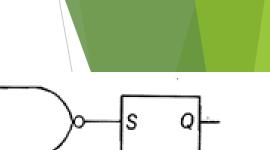
- t_p: propagation delay
- t_{NS} : Delay of Next-State Decoder

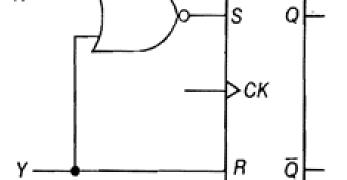
$$f_{CK} = \frac{1}{T_{CK}} \le \frac{1}{t_{\rm s} + t_{\rm p} + t_{\rm NS}}$$

Example: Modify the SR flip-flop to accept "11" as a RESET state.

X(t)	Y(t)	Q(t)	$Q(t + \Delta t)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

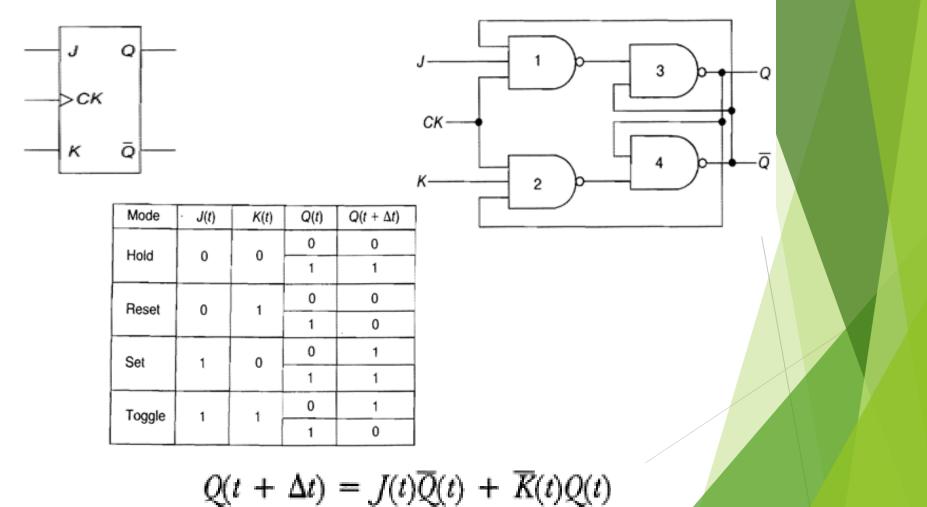
KM: $Q(t + \Delta t) = \overline{X}(t)\overline{Y}(t) + \overline{Y}(t)Q(t)$

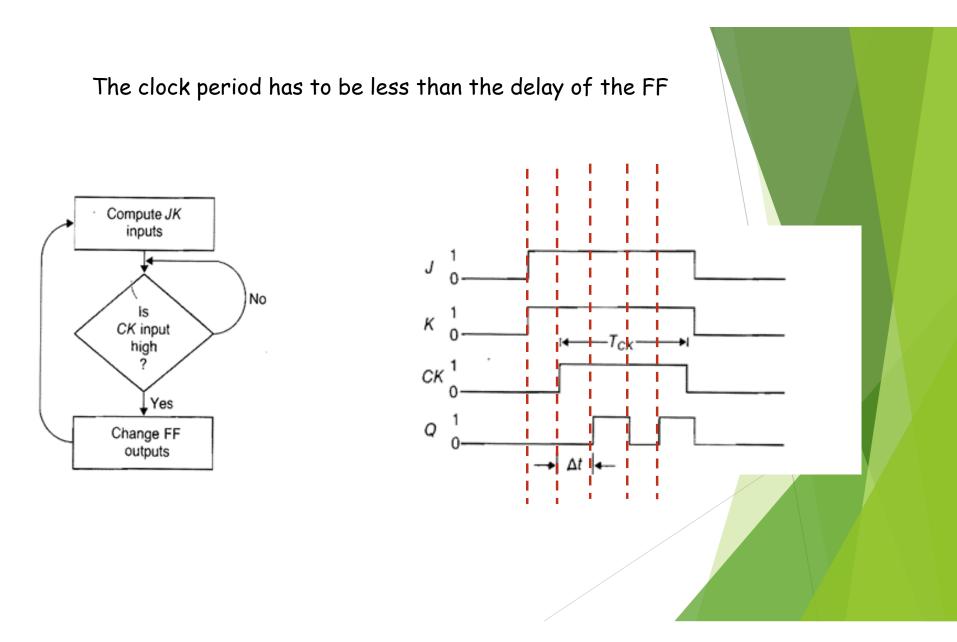


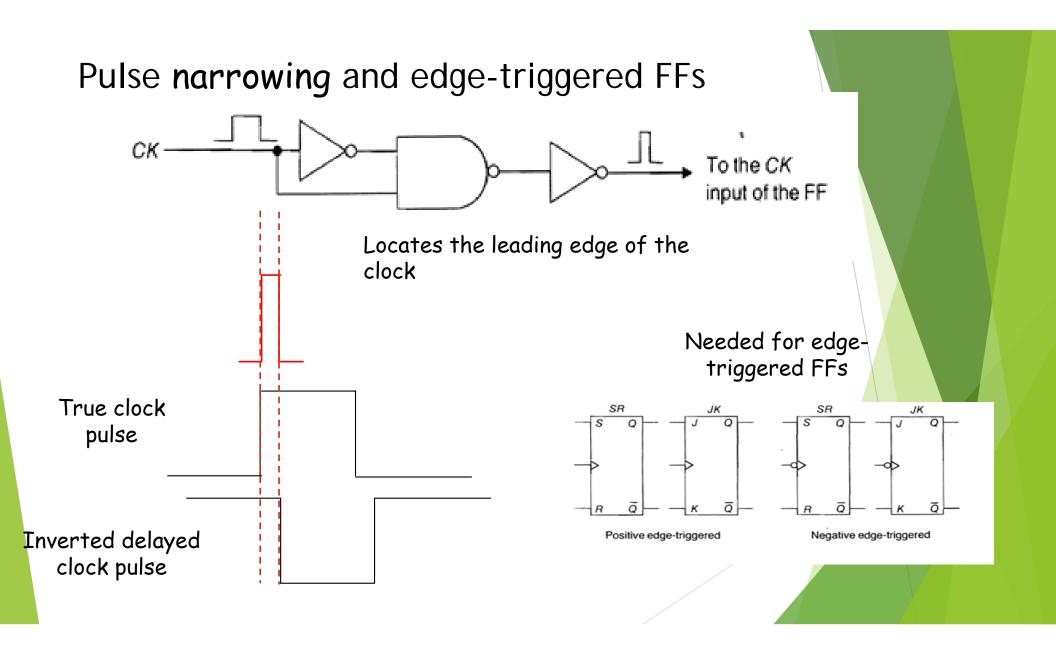


Х

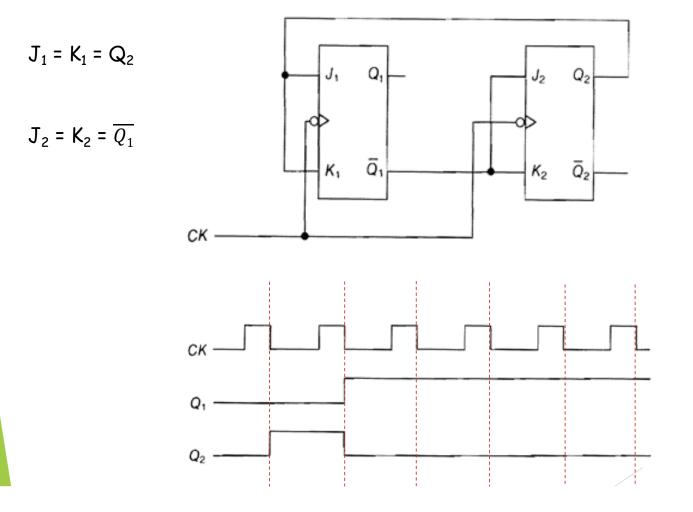
An alternative good way is to let the "11" state to make the FF toggle, JK flip-flop



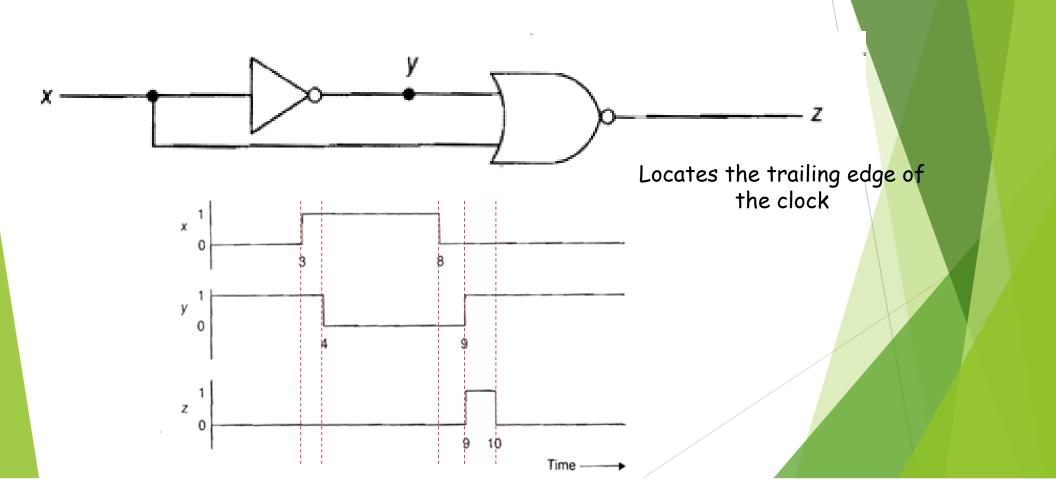




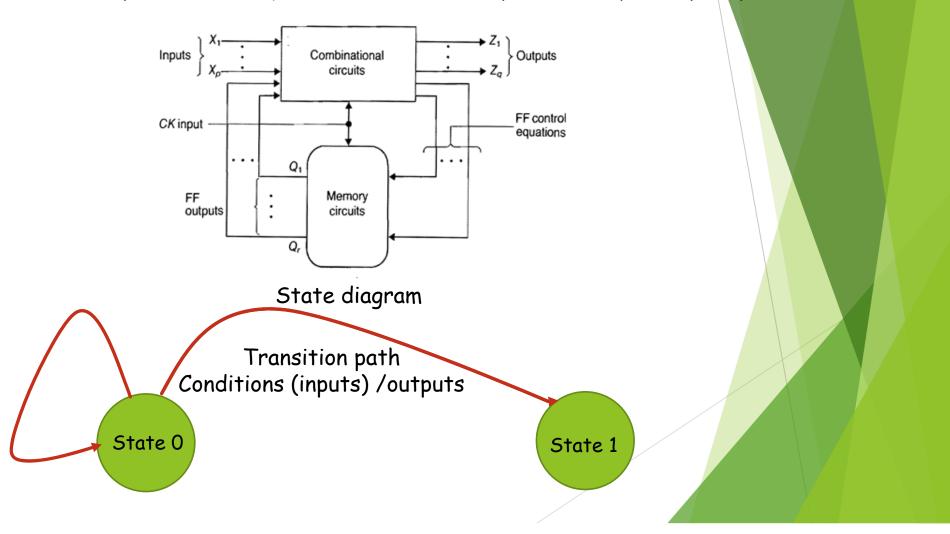
Example:Obtain the timing diagram for the sequential circuit shown for at least six clock cycles. Assume that $Q_1(0) Q_2(0) = 00$

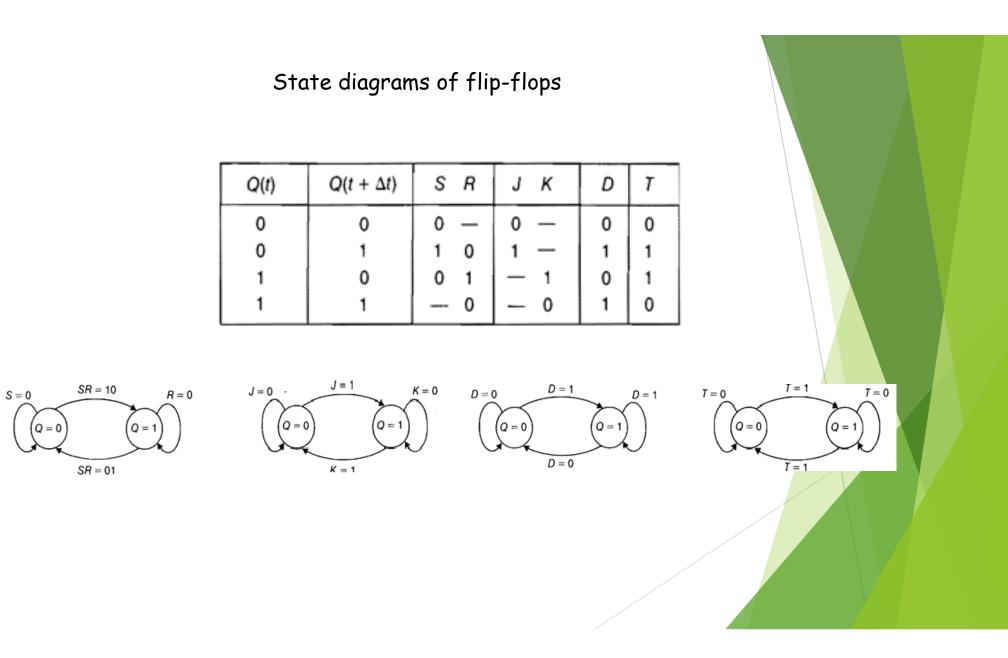


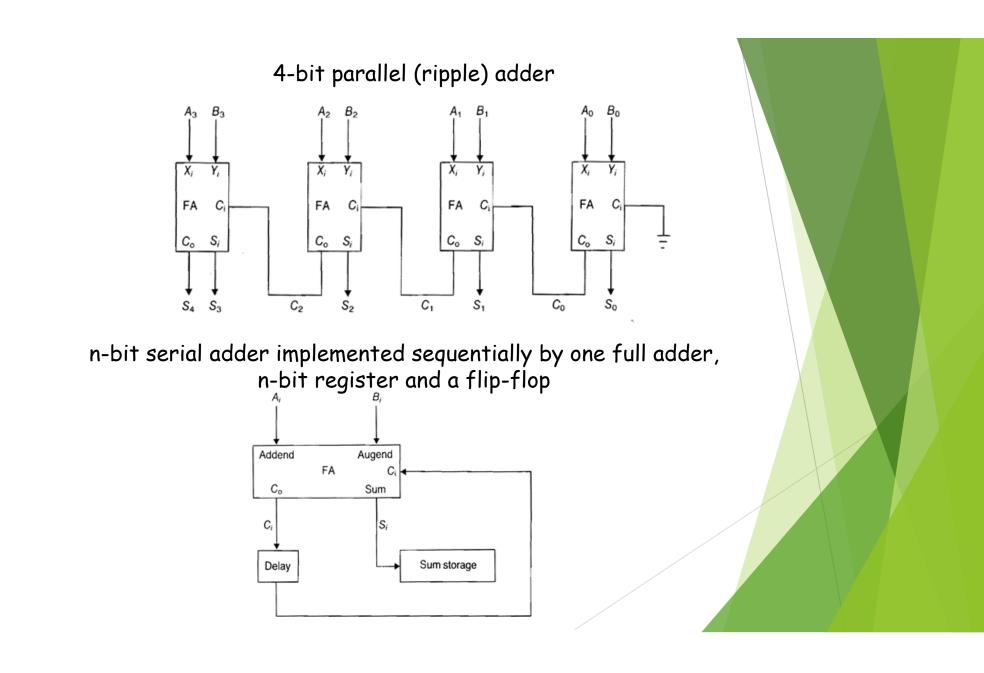
Obtain the response of the shown circuit, where each of the gates is assumed to have 1 unit of gate delay. The input x remains high for a duration longer than 5 units.



The memory circuit of sequential circuits is composed mainly of flip-flops.





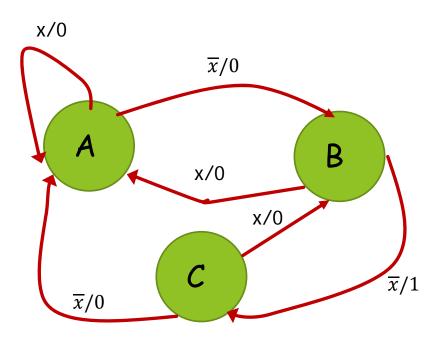


Chapter 4: Design of Synchronous Sequential Circuits

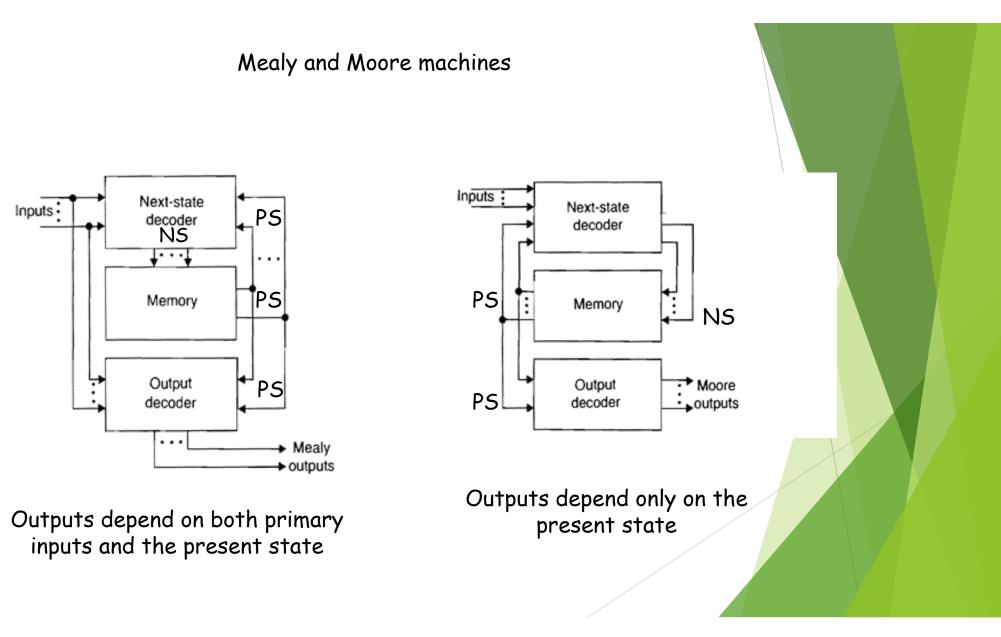
By the end of this chapter we should be able to

- Differentiate between Mealy and Moore finite-state machines
- >Obtain a state diagram for a sequential circuit design
- Follow the different design steps to realize the synchronous sequential machine

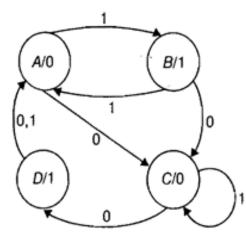
State Diagram and State Table



Present state	Next state NS, outputs				
PS	X = 0	X = 1			
A	Β, Ο	A, 0			
В	C,1	A,0			
С	A, 0	В,О			



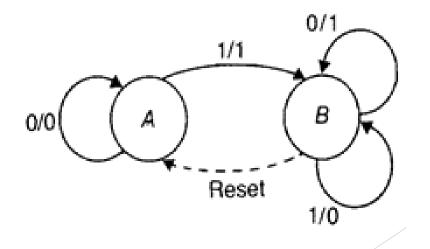
State Diagram and State Table



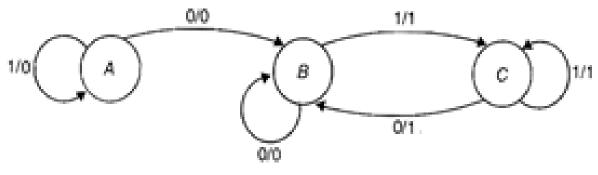
	N	IS	
PS	<i>x</i> = 0	<i>x</i> = 1	Z
Α	С	В	0
B C D	С	A C	1
С	D		0
D	А	А	1

Example: Obtain the state diagram of a controller for a serial machine that performs the 2's complement operation .

1100110101010000



Example: Obtain the state table for synchronous sequential machine that detects a 01 sequence. The detection of sequence sets the output, Z=1, which is reset only by a 00 input sequence.



	NS	NS, Z				
PS	<i>x</i> = 0	<i>x</i> = 1				
A	B.0	A,0				
В	<i>B</i> ,0	C,1				
C	<i>B</i> ,1	C,1				

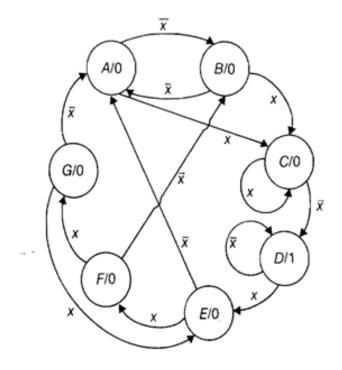
Example: Obtain the Moore equivalent state table for the Mealy machine

	NS	6, Z
PS	<i>x</i> = 0	<i>x</i> = 1
A	C,0	A,0
В	B,0	A,0
c	D,1	C,1
D	D,0	<i>B</i> ,0
E	C,1	A,0

	N	S, Z
PS	<i>x</i> = 0	<i>x</i> = 1
A	C',0	A,0
В	<i>B</i> ,0	A,0
C'	D",1	C",1
C"	D",1	C",1
D'	D',0	B,0
D"	D',0	B,0
Ε	C",1	A,0

	N		
PS	<i>x</i> = 0	<i>x</i> = 0 <i>x</i> = 1	
А	C'	A	0
В	В	A	0
C'	D"	А С" С	0
C" D'	D"	C"	1
D'	D'	В	0
D"	D'	В	1
Е	D' C"	A	—

Eliminating Redundant States



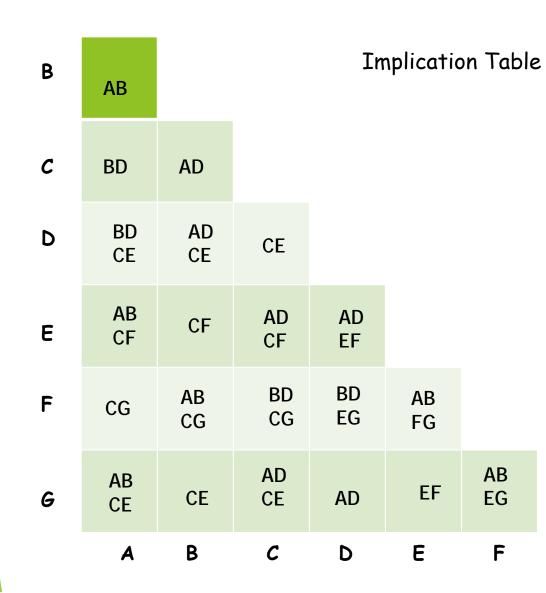
	N			
PS	x = 0	x = 1	Z	
А	В	С	0	
В	A	С	0	
С	D	с с	0	
D	D	Е	1	
Ε	А	F	0	
F	B	G	0	
G	A	Ε	0	

Are any two states equivalent? So, do we have any redundant state?

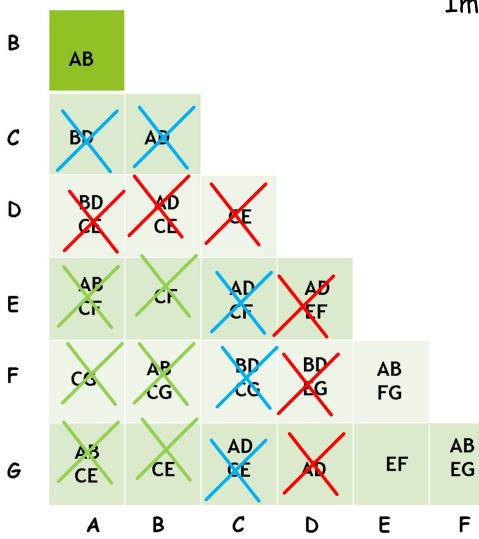
Equivalent States:

>Have the same output

>Make the same transition



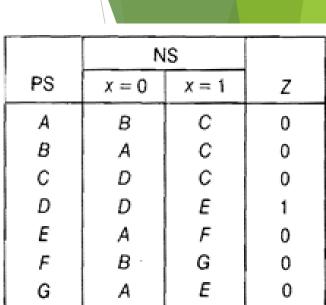
	N	S	
PS	x = 0	x = 1	Z
А	В	С	0
В	А	С	0
С	D	С	0
D	D	Е	1
Ε	А	F	0
F	B	G	0
G	А	E	0



	N	IS	
PS	x = 0	x = 1	Z
A	В	С	0
В	А	с с	0
C	D		0
D	D	E	1
E	А	F	0
F	B	G	0
G	А	Ε	0

Implication Table

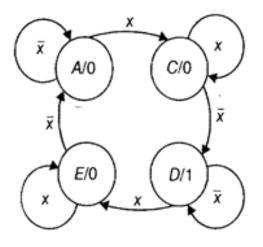
	Partitio	on Tab	le							
		В	АВ							
F	(F <i>G</i>)	с	Br	AI						
Е	(EFG)	D	BD		X					
D	(EF <i>G</i>)		AP							
С	(EF <i>G</i>)	E	CT	Cr	CT.	F F				
В	(EF <i>G</i>)	F	C/S	A₽ CG	BD CC	BD	AB FG			
A	(AB)(EFG)	G	A.3 CE	CE	AD ITE	X	EF	AB EG		
	(AB)(C)(D)(EFG)		A	В	с	D	E	F		



	N			
PS	x = 0	x = 1	Z	
А	А	с с	0	
A C	D		0	
D	D	Е	1	
Ε	А	Ε	0	

Reduced State Diagram and State Table

(AB)(C)(D)(EFG)



n: FFs m: States $m \le 2^n$

PS	N		
Q_1Q_2	<i>x</i> = 0	<i>x</i> = 1	Ζ
00	00	01	0
01	11	01	0
11	11	10	1
10	00	10	0

State Transition Table

A = 00, C = 01, D = 11, and E = 10

Excitation Maps and Design Equations

1

 $Q_1 Q_2 00 01 11 10$

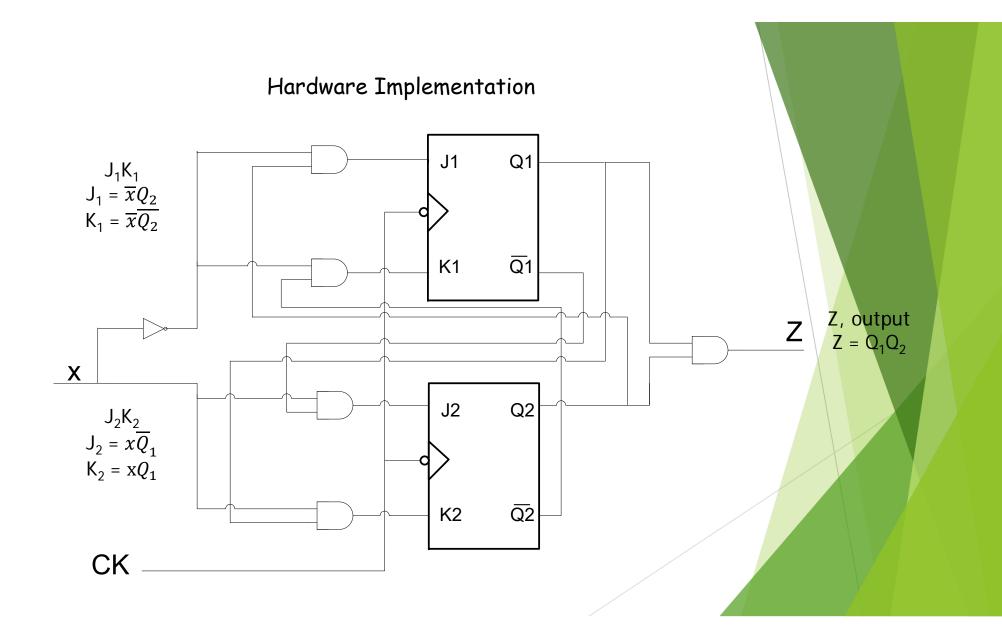
X 0 0_ 1_ _0 _1

0_ 0_ _0 _0

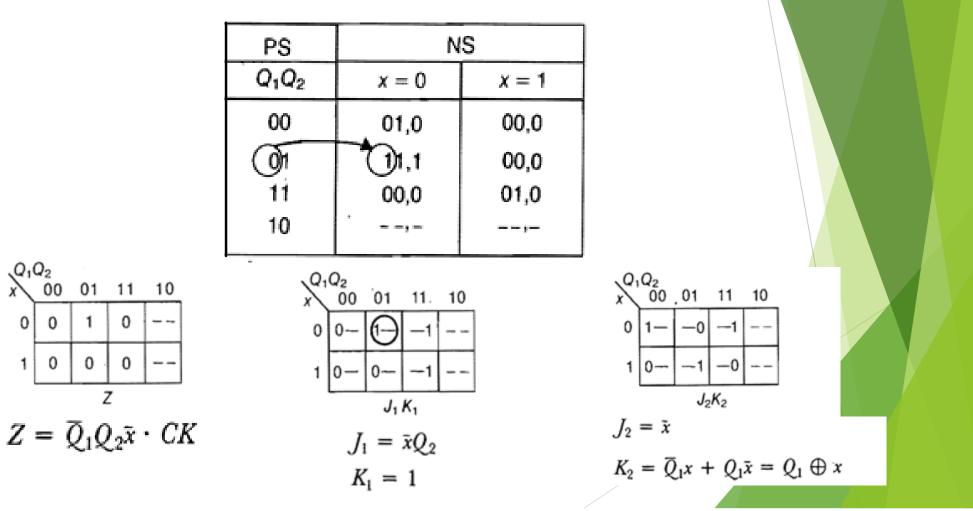
 $J_1 K_1$ $J_1 = \overline{x} Q_2$ $K_1 = \overline{x} \overline{Q_2}$

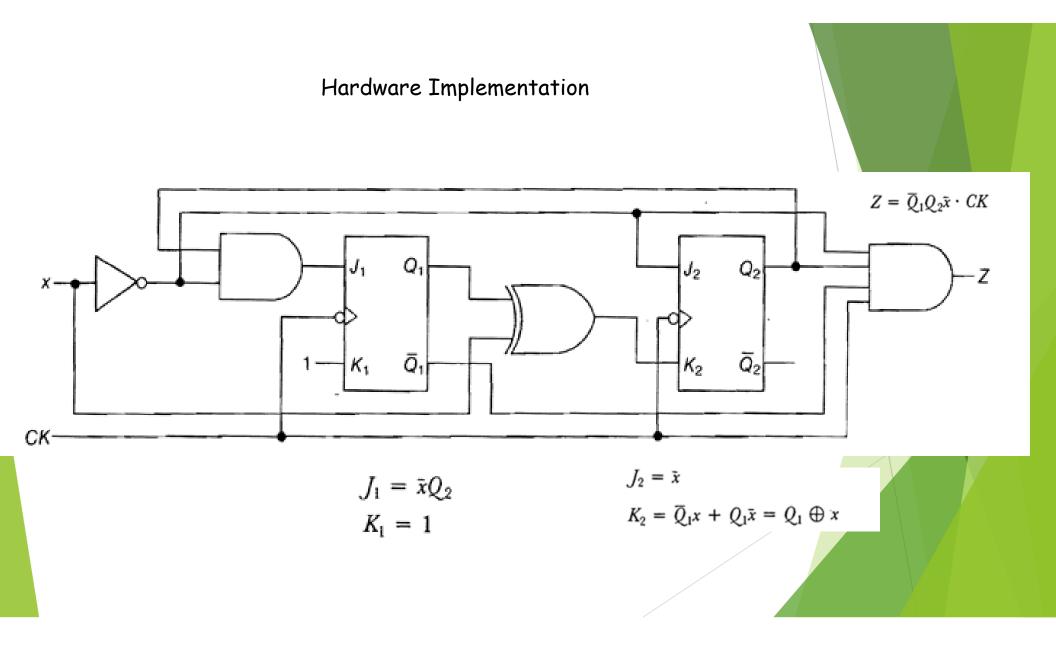
Q1C	$\frac{00}{2}$	01	11	10	
X O	0	0	1	0	
1	0	0	1	0	
Z, output Z = Q ₁ Q ₂					

Q ₁ Q		01			
Х О	0_	_0	_0	0_	
1	1_		_1		/
		J ₂	K ₂		
		J ₂ = K ₂ =	$ x \overline{Q}_{1} \\ x Q_{1} $		



Example: Find the HW implementation of the FSM whose state transition table is given below





Design Algorithm

Step 1. Obtain the state diagram from the word statement of the problem.

Step 2. Obtain the state table from the state diagram.

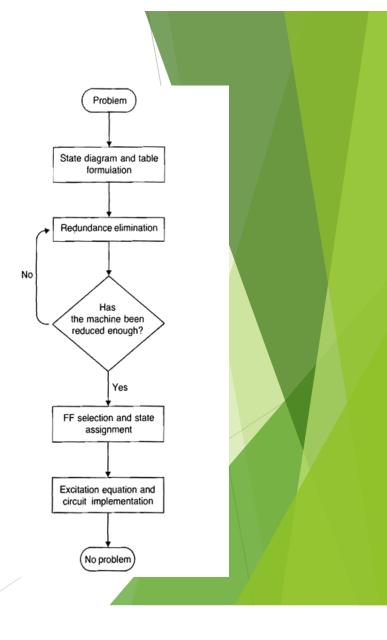
Step 3. Eliminate the redundant states.

Step 4. Make state assignments.

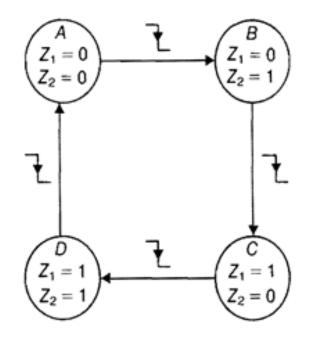
Step 5. Determine the type of FFs to use and obtain the corresponding excitation maps.

Step 6. Determine the output and FF equations.

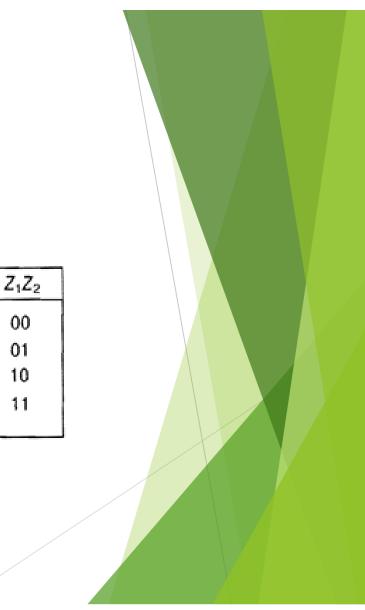
Step 7. Construct the logic circuit.



Design a two-bit clocked sequential counter circuit that counts clock pulses.

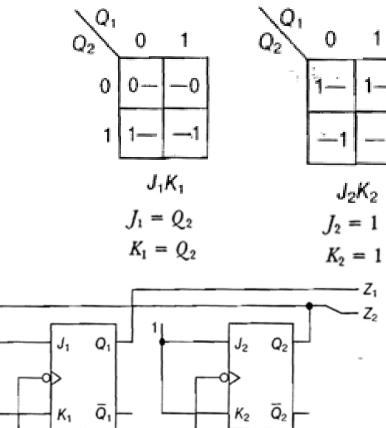


PS	NS	Z_1Z_2
А	в	00
В	С	01
С	D	10
D	.A	11



PS		
Q1Q2	NS	Z1Z2
00	01	00
01	10	01
10	11	10
11	00	11

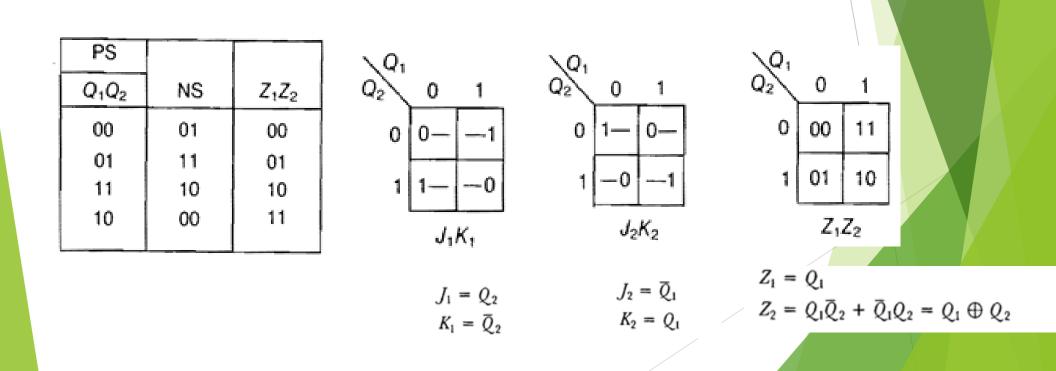
СК

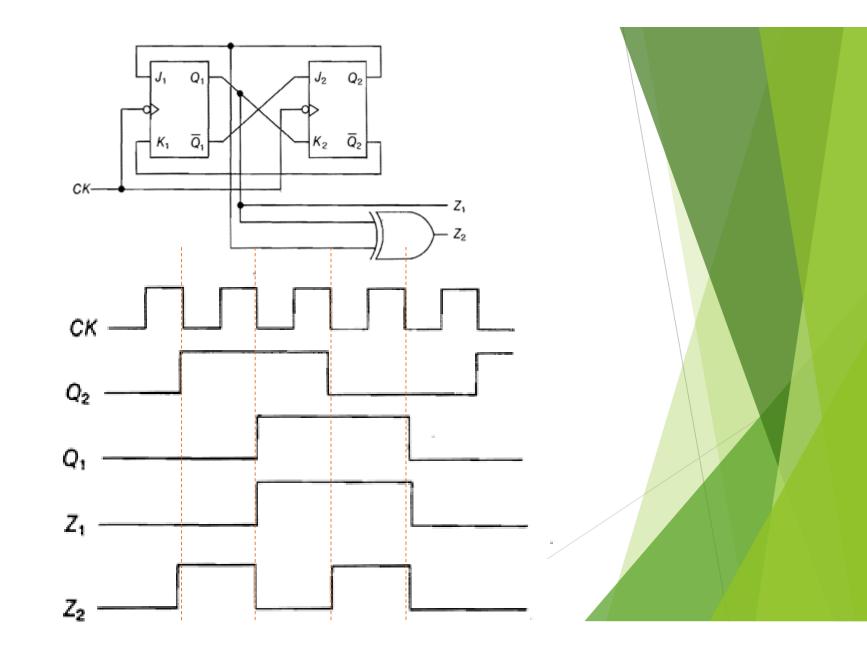


1

1--

Repeat the design of Example 7.5 by assigning A = 00, B = 01, C= 11, and D = 10. Construct the corresponding timing diagram as well.





Obtain a scale-of-seven up-counter, as shown in the state diagram of Figure 7.31, using D FFs and PLA. Assume that the counter is tied to a seven-segment display device.

10

0

1

0

 Q_3Q_2

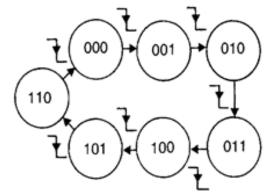
0

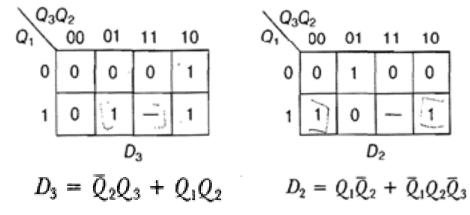
1

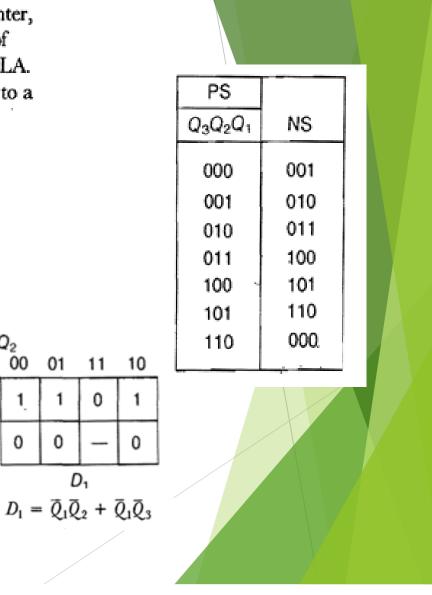
00

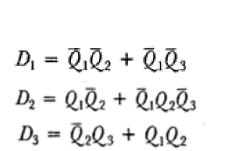
0

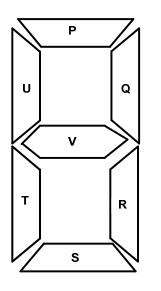
 Q_1

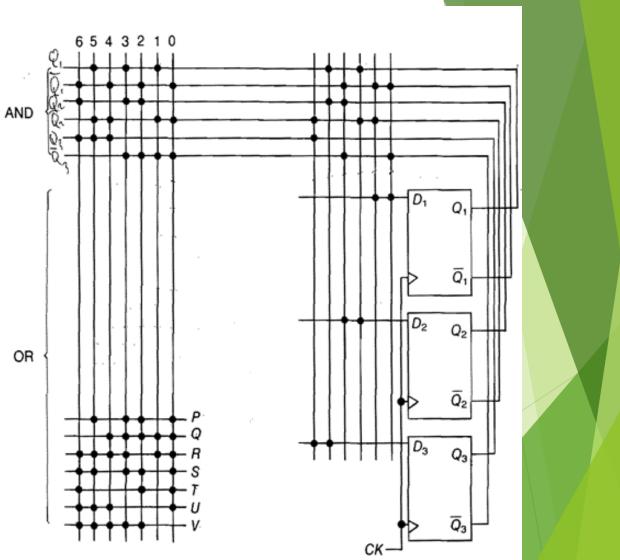












Chapter 5: Introduction to Counters and Registers

> A unit for data manipulation ______ REGISTERS and logic circuits

> A second unit for regulating events of the first unit ______ COUNTERS

Counters:

- Synchronous
- Asynchronous

Registers:

- Serial
- Parallel

Single-bit counter
$$(0, 1, 0, 1, ...)$$
 $J = K = 1$ Two-bit counter $(00, 01, 10, 11, 00,)$ $J_1 = K_1 = 1$ $J_2 = K_2 = Q_1$

Likewise for three-bit counter

$$J_{1} = K_{1} = 1$$

$$J_{2} = K_{2} = Q_{1}$$

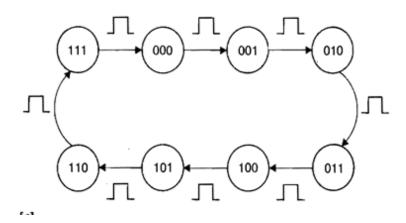
$$J_{3} = K_{3} = Q_{2}Q_{1}$$

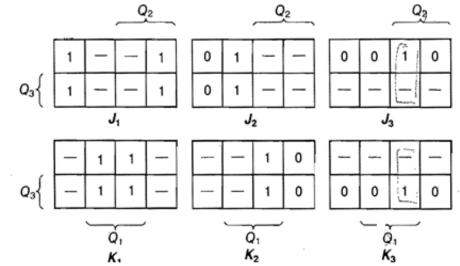
For n-bit counter

$$J_n = Q_{n-1}Q_{n-2} \dots Q_3Q_2Q_1 = Q_{n-1}J_{n-1}$$

$$K_n = Q_{n-1}Q_{n-2} \dots Q_3Q_2Q_1 = Q_{n-1}K_{n-1}$$

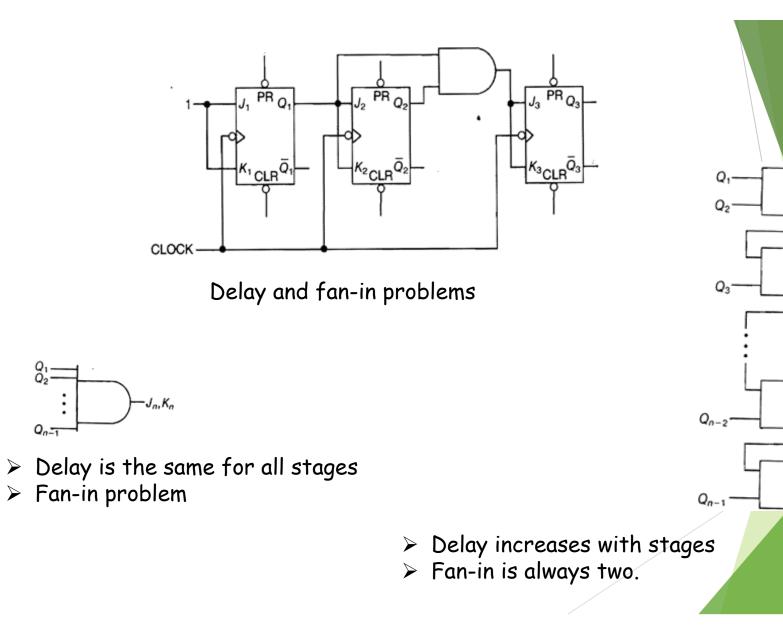
Design a three-bit counter





PS	
$Q_{3}Q_{2}Q_{1}$	NS
000	001
001	010
010	011
011	100
100	101
101	110
110	111
111	000

 $J_{1} = K_{1} = 1$ $J_{2} = K_{2} = Q_{1}$ $J_{3} = K_{3} = Q_{2}Q_{1}$

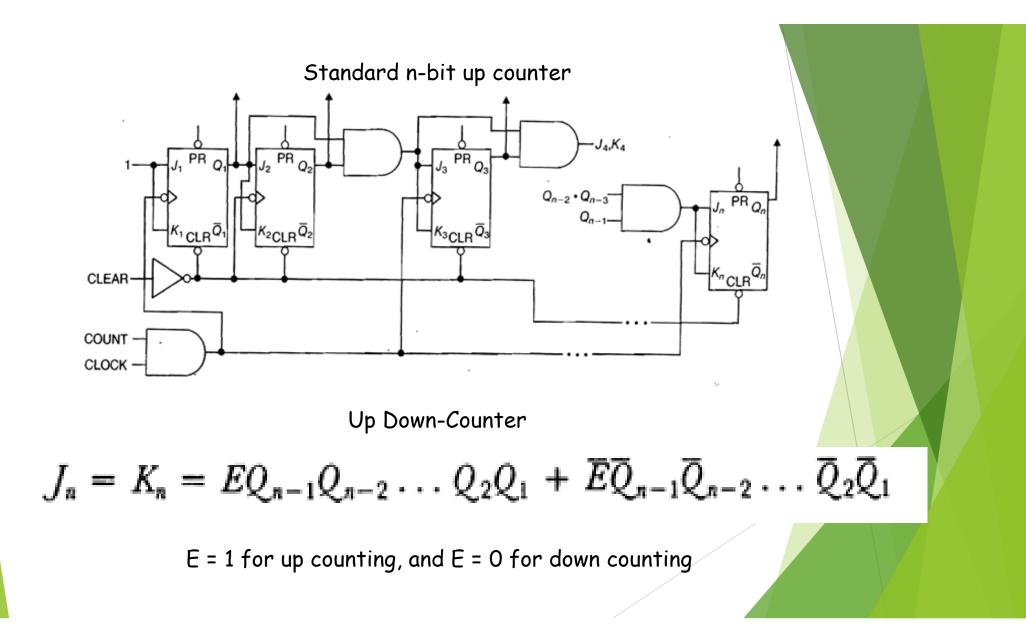


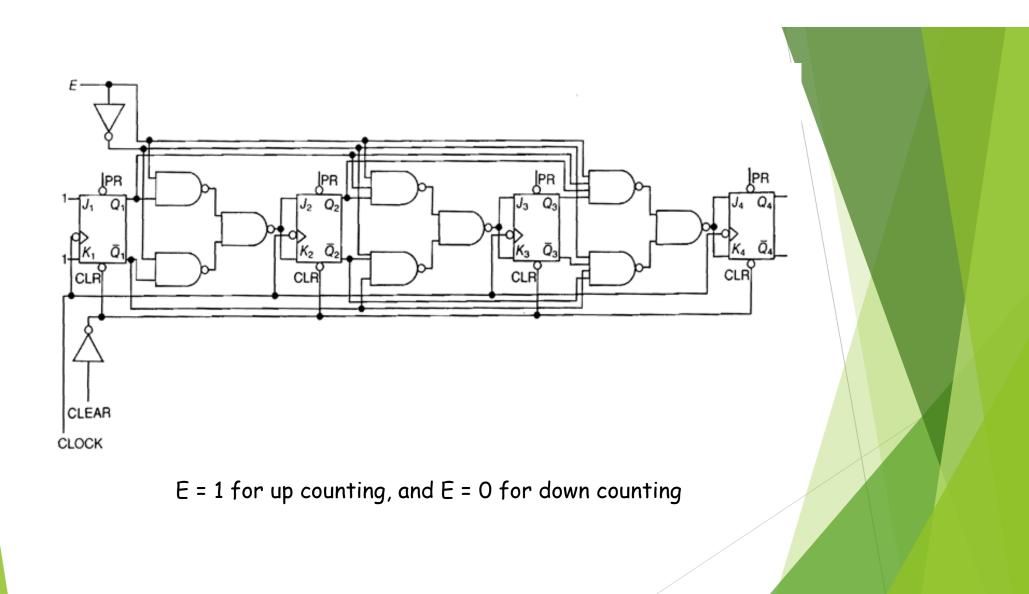
- J₃,K₃

- J4, K4

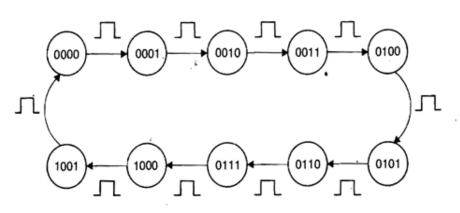
 J_{n-1}, K_n

 J_n, K_n

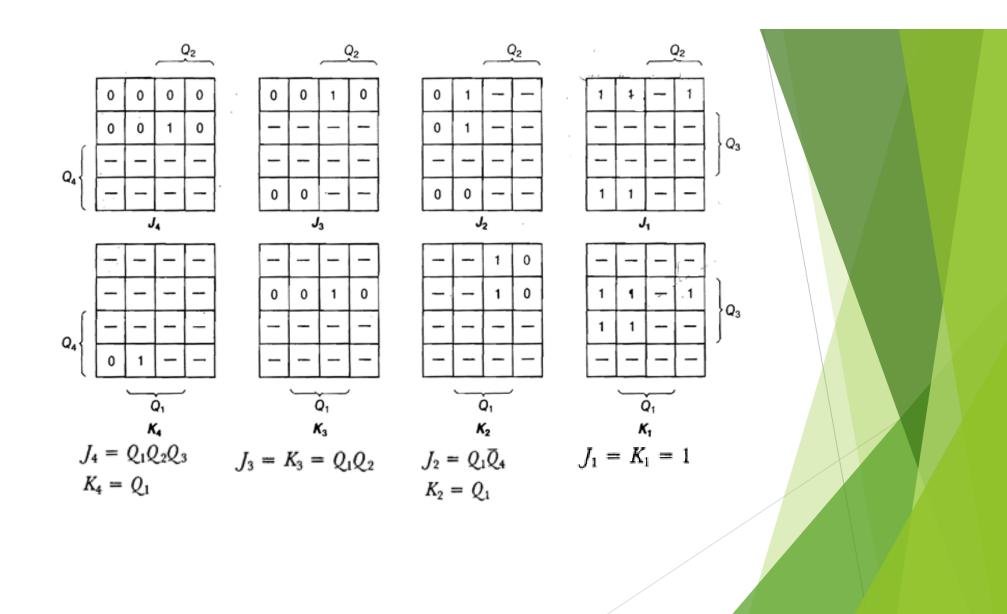


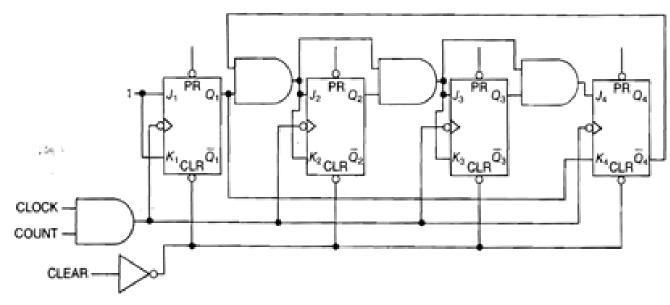


Obtain the J and K equations for a BCD up-counter.



PS					
$Q_4 Q_3 Q_2 Q_1$	NS	J_4K_4	J_3K_3	J ₂ K ₂	J_1K_1
0000	0001	0-	0-	0-	1
0001	0010	0-	0	1—	-1
0010	0011	0-	0-	-0	1—
0011	0100	0-	1—	- 1	-1
0100	0101	0-	-0	0	1
0101	0110	0-	0	1-	-1
0110	0111	0-	-0	0	1—
0111	1000	1-	-1	-1	-1
1000	1001	0	0-	0-	1—
1001	0000	1	0-	0 —	1





From a regular 4-bit counter the BCD one Can be thought of as such:

1001 should switch to0000 and not to1010

 Q_4 , the MSB, should become a 0, Q_2 should be prevented from becoming a 1.

 Q_1 should be fed to K_4 , K_4 and J_4 should not be connected, $Q_1\overline{Q}_4$ should be fed to J_2 and K_2 . Obtain the state table for the counter shown in Figure 10.10, starting from the count 000. The MSB of the count is at Q_3 .

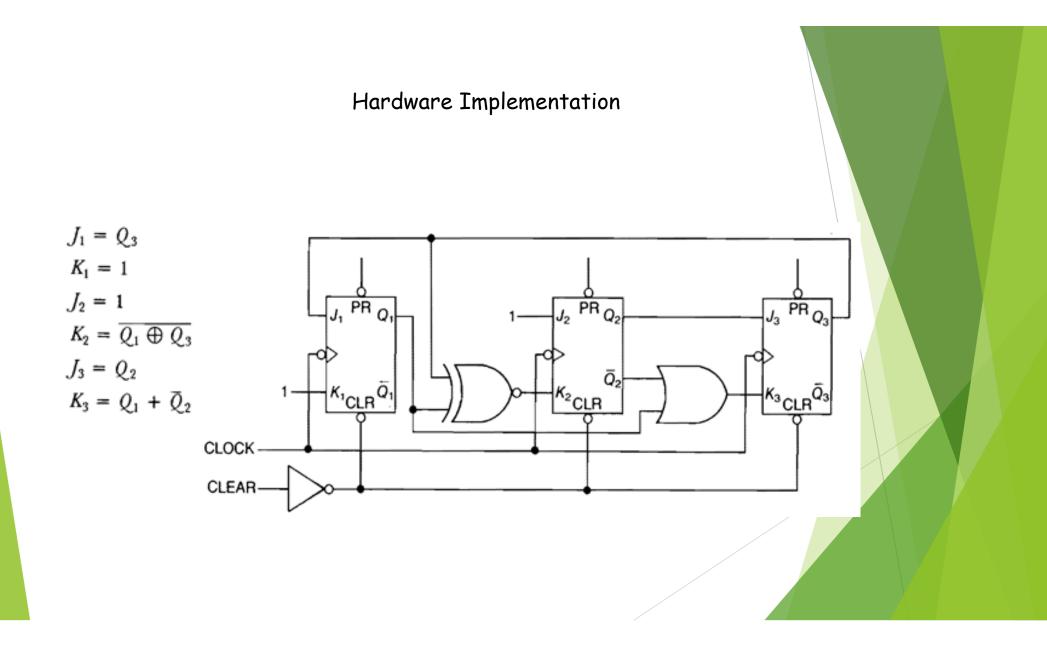
$$J_{1} = \overline{Q_{3}}, \qquad K_{1} = Q_{2}$$

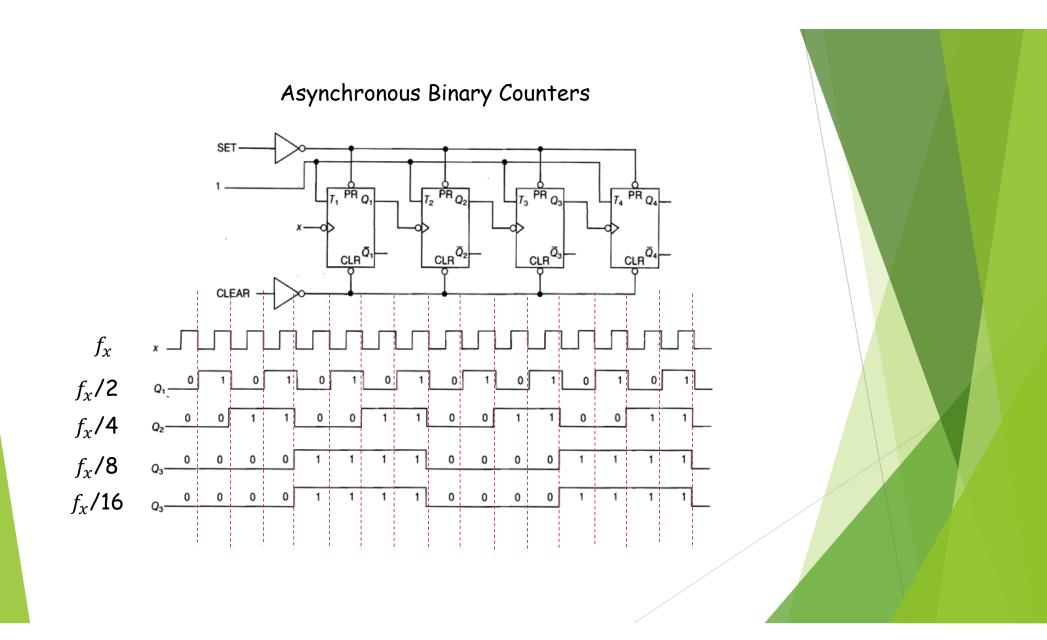
$$J_{2} = Q_{1} + Q_{3} \qquad K_{2} = 1$$

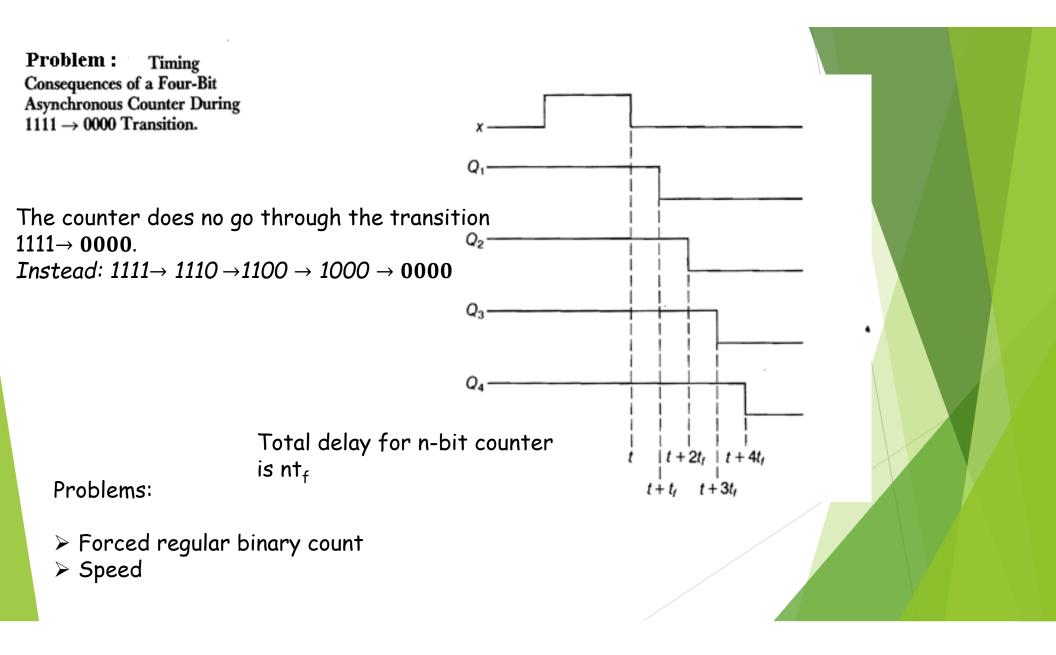
$$J_{3} = K_{3} = Q_{2}$$

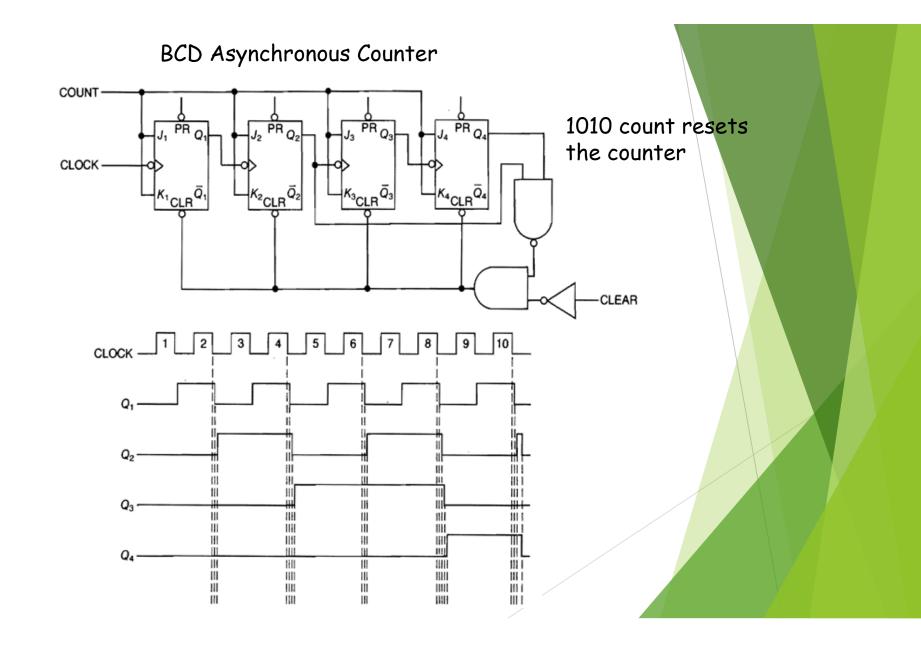
0, 1, 3, 4, 6, 0,

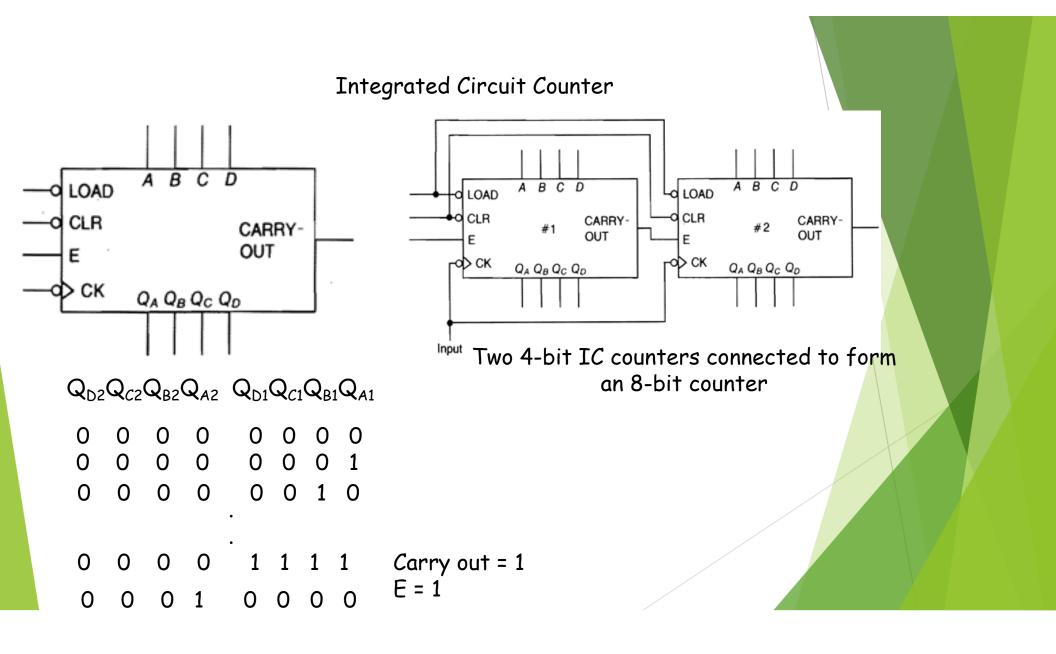
						ous count					PS	NS						}	
	produces the count sequence 0, 2, 4, 3, 6, 7, 0, $J_1 = Q_3$								$Q_3Q_2Q_1$	$Q_{3}Q_{2}Q_{1}$	J_3K_3		J_2K_2	J	1K1				
5	, 0, 1	, v	,	••		$J_1 = Q_3$					000	010	0	-	1	0	·		
						$K_1 = 1$					001			-		_			
						$J_2 = 1$					010	100	1—		—1	0			
						$K_2 = \overline{Q_1}$	Ð	$\overline{Q_3}$.011 100	110 011	1—- 1		Q 1		1		
						$J_3 = Q_2$					100			-					
						$K_3 = Q_1$		ō.			110	111	0		-0	1			
(Q_2Q_1					113 - QI		×2			111	000	1		—1	_	-1		
	Q_3	00	01	11	10			00	01	11	10				00	01	11	10	
	0	0	-	-	0		0	1	-	-	-			0	0	-	1	1	
	1	1	-	-	1		1	1	-	-	-			1	-	-	-	-	
	Q_2Q_1		J	1					J_2	2						\mathbf{J}_3	3		
	Q_3	00	01	11	10			00	01	11	10				00	01	11	10	
	0	-	-	1	-		0	-	-	0	1			0	-	-	-	-	
	1	-	-	1	-		1	-	-	1	0			1	1	-	1	0	
			K	1					K	2						K	3		



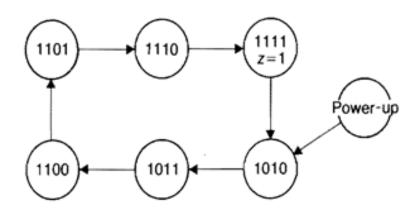


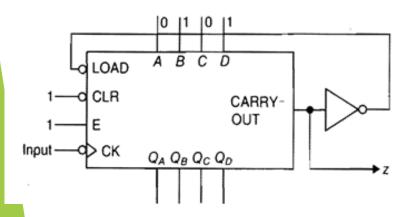


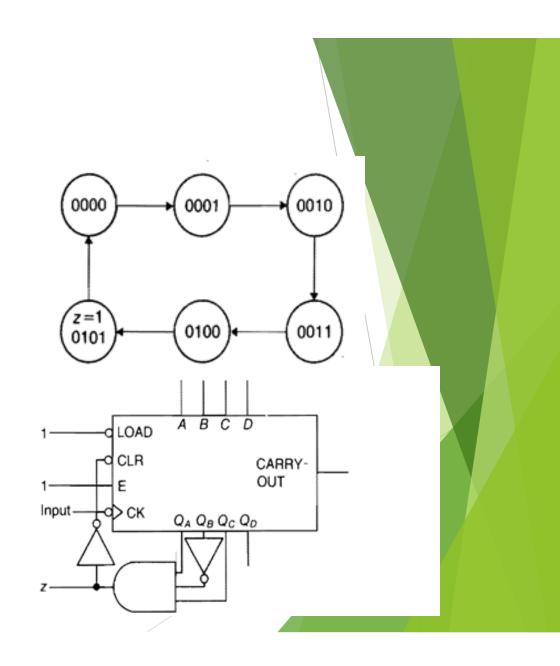




Design a counter using the module of Figure 10.18 that outputs a 1 each time six counts have been received.





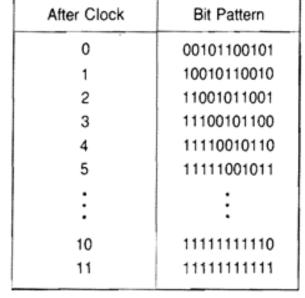


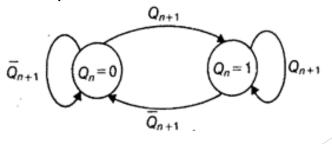
The END

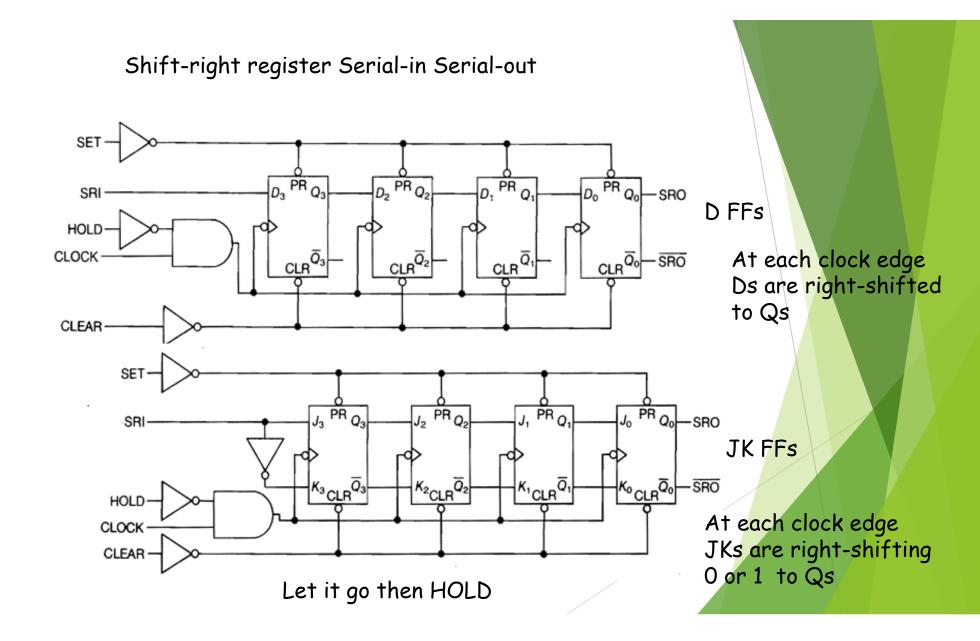
The Basic Shift Reregister

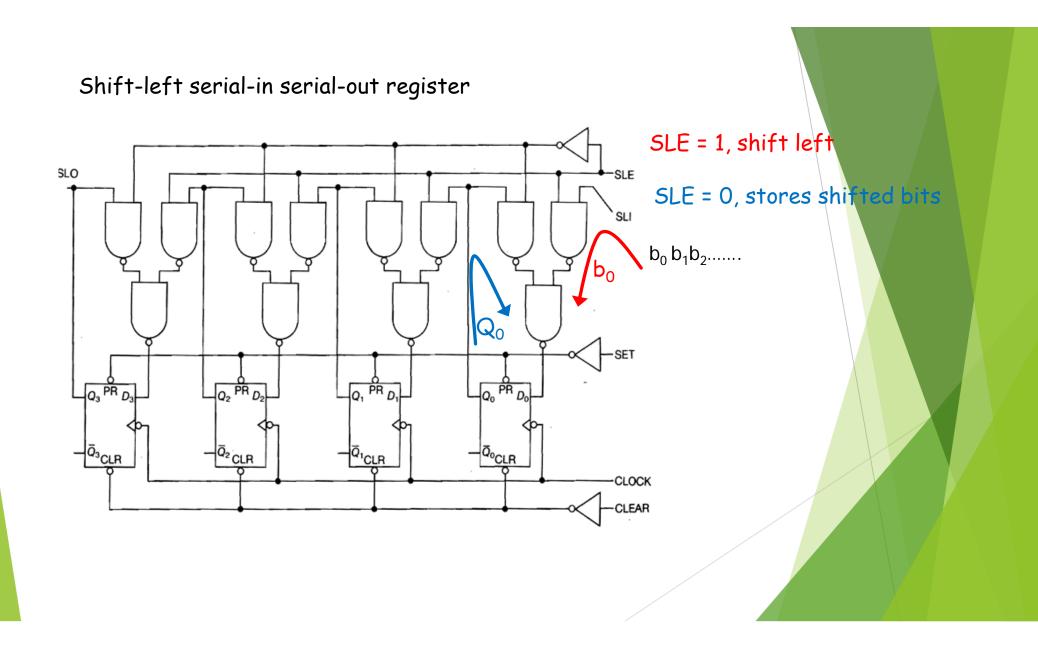
LSBs are lost and MSBs are replaced with ones Shift-right register
LSBs replace MSBs Circulate-right register
MSBs replace LSBs Circulate-left register
Shift left one bit = multiply by 2

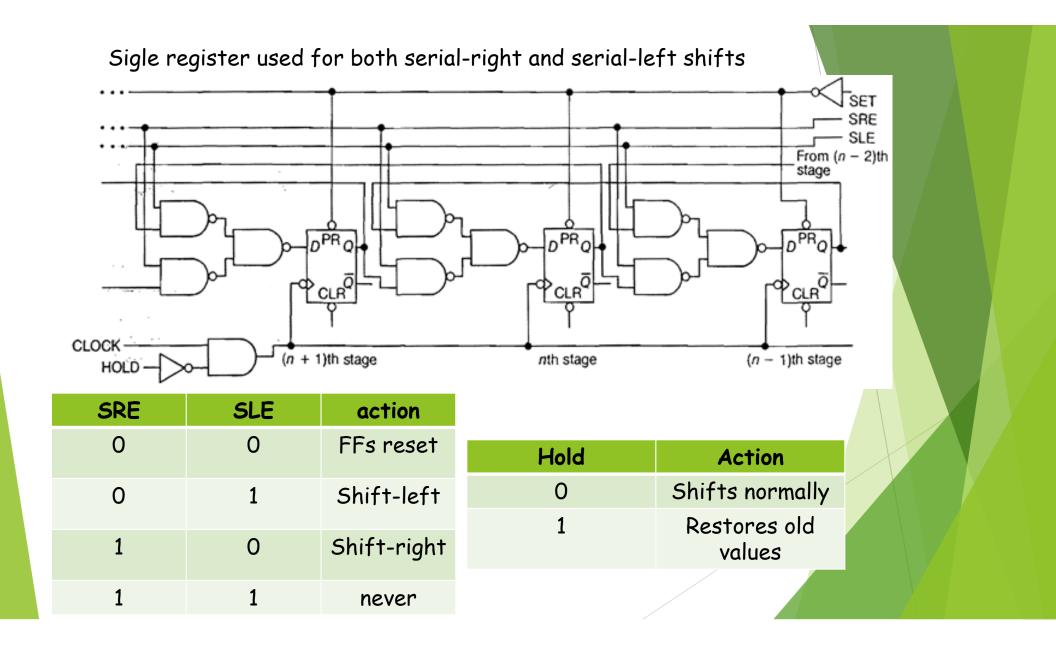
Shift right one bit = divide by 2

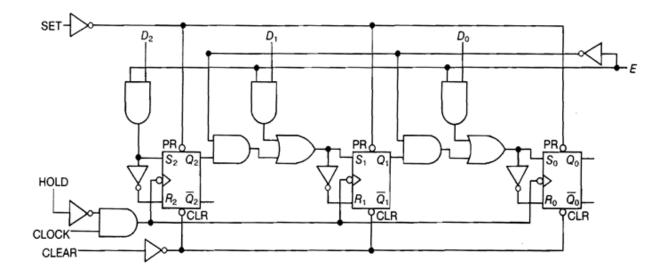








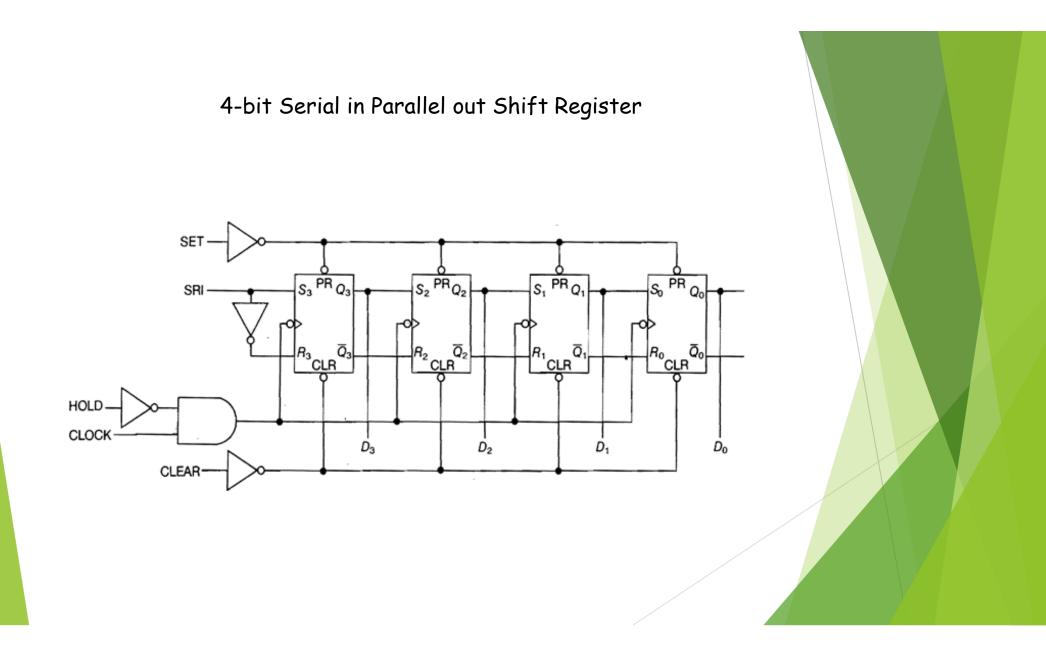




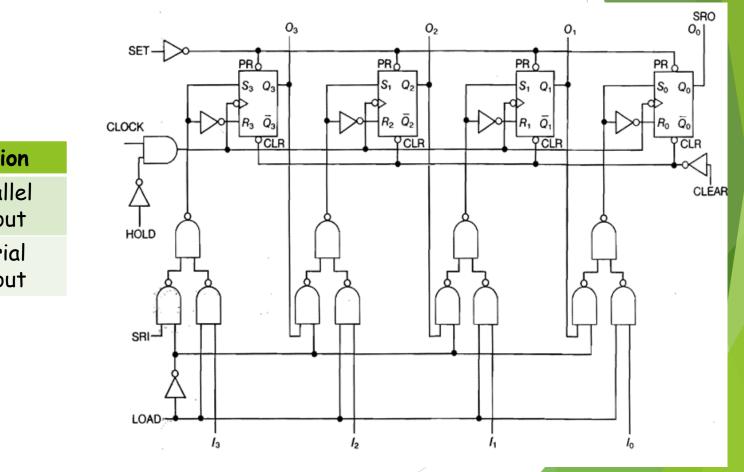
3-bit parallel in serial out shift register

E	Action
1	Data loaded
0	Right-shift

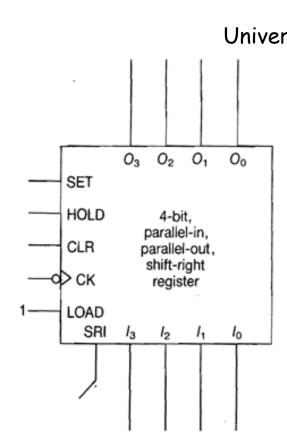
Hold	Action
0	Load or shift
1	Restores



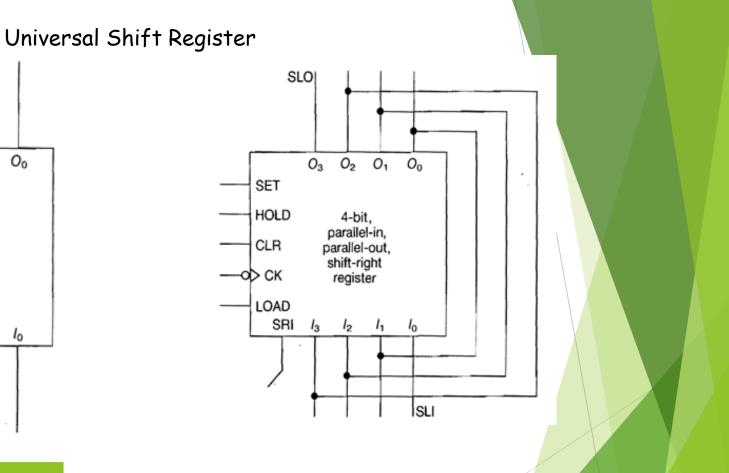
4-bit Parallel in Parallel out Shift Register



Load	Action
1	Parallel in/out
0	Serial in/out



Load	Action
0	Shift-right serial in/out
1	Parallel



Wired shift-left register

Chapter 5: Design of Asynchronous Sequential Circuits

Pulse-Mode Circuits:

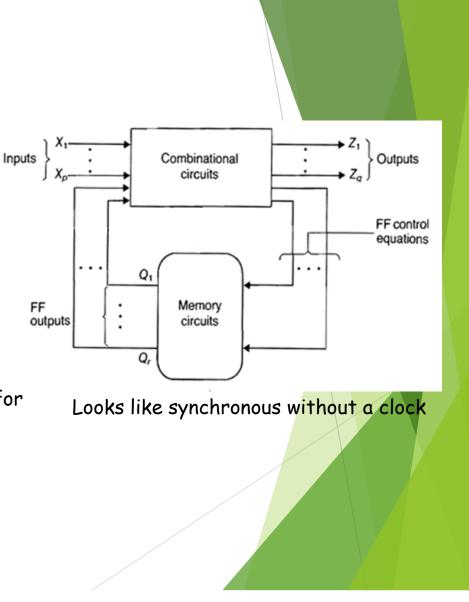
No clock for state transitions.

Just input pulses, Key boards and Vending machines

No overlapping pulses

Conditions for perfect circuit operation

- 1. Simultaneous input pulses on two or more lines are forbidden. Interval between pulses is large enough for system to return to a stable state.
- 2. Pulse widths must be sufficient to allow the components to respond to them.



As long as the previously stated two conditions are met the design of asynchronous circuits will be similar to the synchronous ones

x3 x2 An example of three nonoverlapping input pulses x1 Design Algorithm 1. Get the state diagram. For n-inputs there be n transition paths leaving each of the sates. 2. Remove redundancies. 3. Assign states and generate state transition 4. Get the excitation maps and write down the

excitation equations.

table.

5. Draw the circuit diagram.

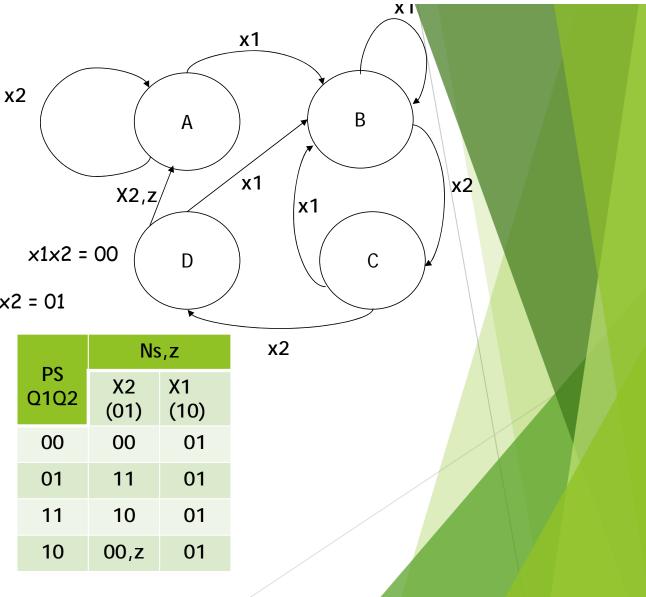
Example: Design a circuit that receives two inputs x1 and x2 and gives an output coincident with the third consecutive x2 pulse following at least one x1 pulse.

Forbidden pulses: x1x2 = 11

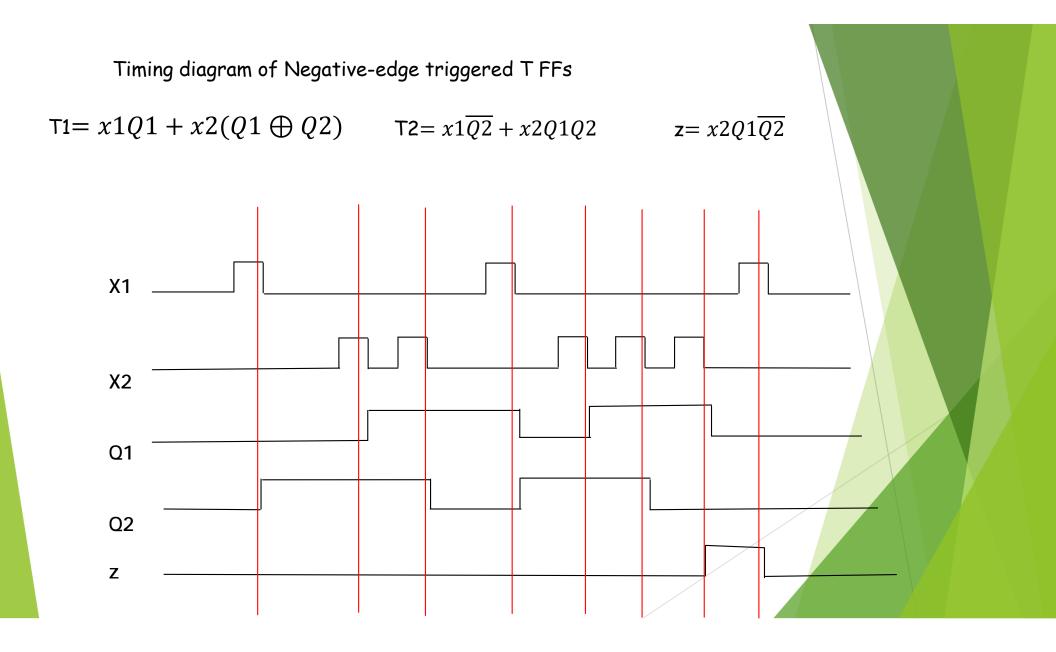
No pulses have occured

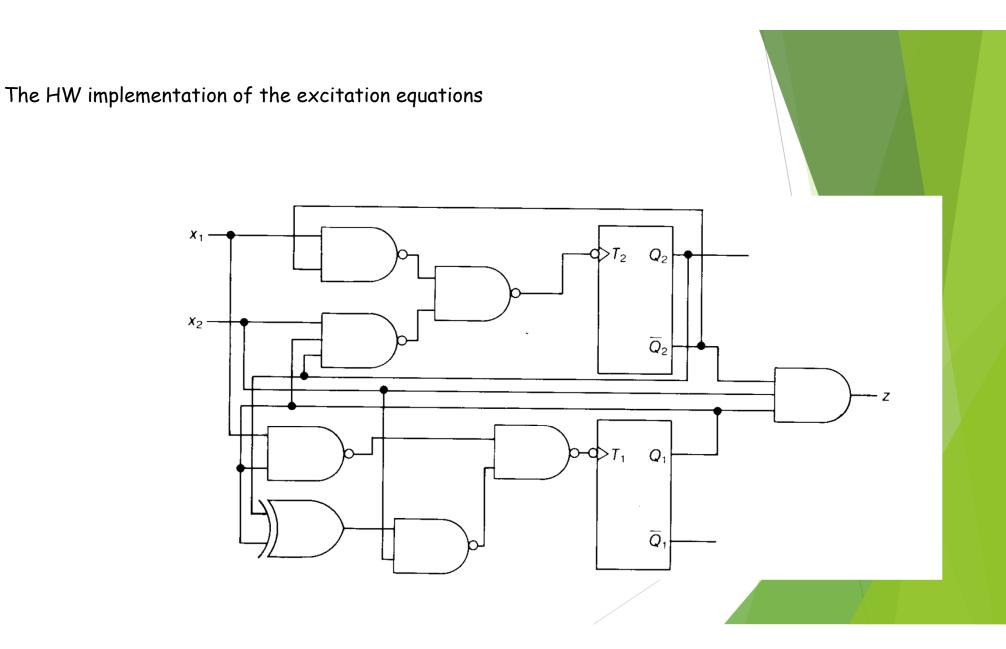
Useful pulses x1x2 = 10 and x1x2 = 01

	Ns,z			
PS	x2	x1		
Α	А	В		
В	С	В		
С	D	В		
D	A,z	В		



							PS Q1Q2	N X2 (01)	ls,z X1 (10)			
							00	00	01			
							01	11	01			
Excita T FFs		aps: sumed					11	10	01			
1 5		Sumea					10	00,z	01			
Q1Q2	x1	x2		Q1Q2	x1	x	2	Q1Q	2 x1	x2		
00	0	0		00	1	C)	00	0	0		
01	0	1		01	0	C)	01	0	0		
11	1	0		11	0	1		11	0	0		
10	1	1		10	1	C)	10	0	1		
T1 = x1Q	<u>)</u> 1+.	x2(Q1	. ⊕ Q2)	T2=	$= x1\overline{Q}$	2+	x2Q1Q2	2	z= :	x2Q1 <u>Q2</u>		

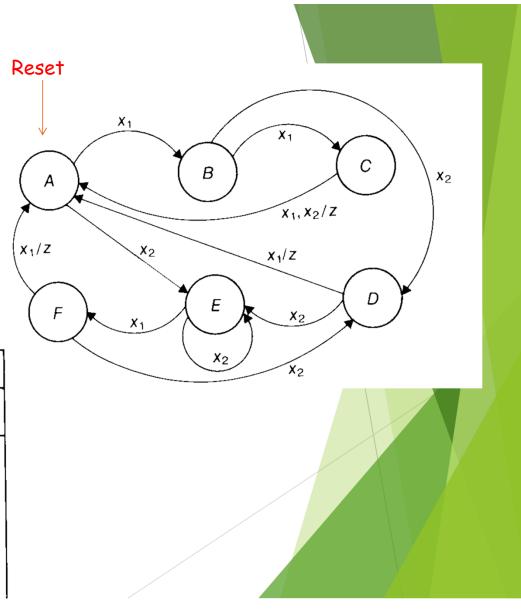


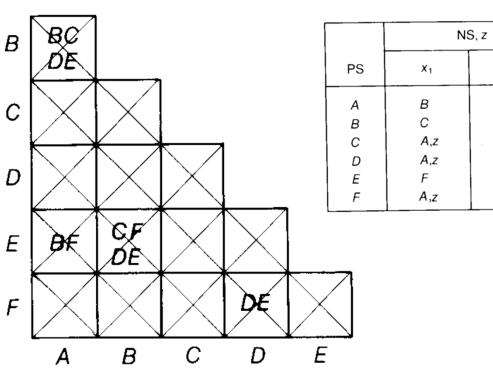


Example 2:

Design a pulse-mode circuit that satisfies the following requirements. The circuit has two inputs, x_1 and x_2 , and one output, z. The output pulse is to be produced simultaneously with the last of a sequence of three input pulses if and only if the sequence contained at least two x_1 pulses. After each output a new sequence is looked for.

	NS	S, z
PS	<i>x</i> ₁	x ₂
A	В	E
В	С	D
С	A,z	A,z
D	A,z	E
E	F	E
F	A,z	D

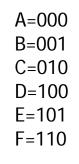




No redundance states

Implication table

Arbitrary state assignment



 \mathbf{x}_2

Ε

D

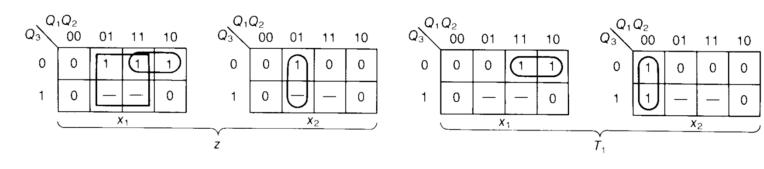
A,z

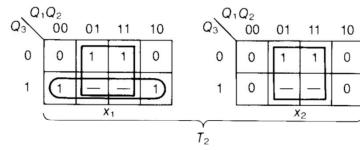
Ε

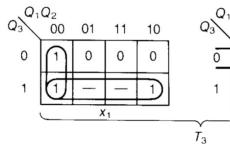
E

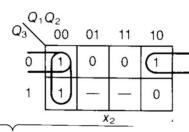
D

PS	NS, z			
$Q_1 Q_2 Q_3$	X ₁	x ₂		
000	001	101		
001	010	100		
010	000, <i>z</i>	000, <i>z</i>		
100	000, <i>z</i>	101		
101	110	101		
110	000, <i>z</i>	100		









$$z = x_1(Q_2 + Q_1 \overline{Q}_3) + x_2(\overline{Q}_1 Q_2)$$

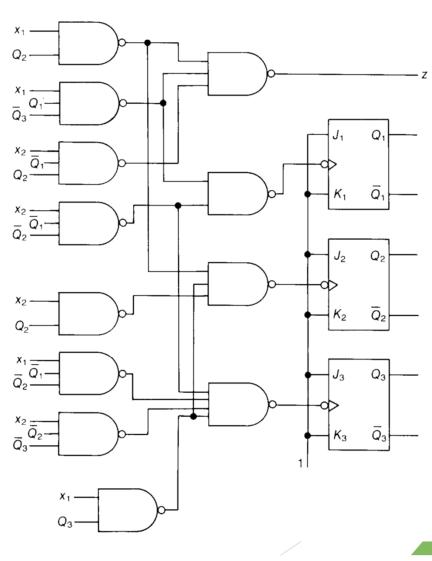
$$T_1 = x_1(Q_1 \overline{Q}_3) + x_2(\overline{Q}_1 \overline{Q}_2)$$

$$T_2 = x_1(Q_2 + Q_3) + x_2(Q_2)$$

$$T_3 = x_1(Q_3 + \overline{Q}_1 \overline{Q}_2) + x_2(\overline{Q}_1 \overline{Q}_2 + \overline{Q}_2 \overline{Q}_3)$$

PS	NS, Z				
$Q_1 Q_2 Q_3$	Х ₁	x ₂			
000	001	101			
001	010	100			
010	000, <i>z</i>	000, <i>z</i>			
100	000,z	101			
101	110	101			
110	000, <i>z</i>	100			

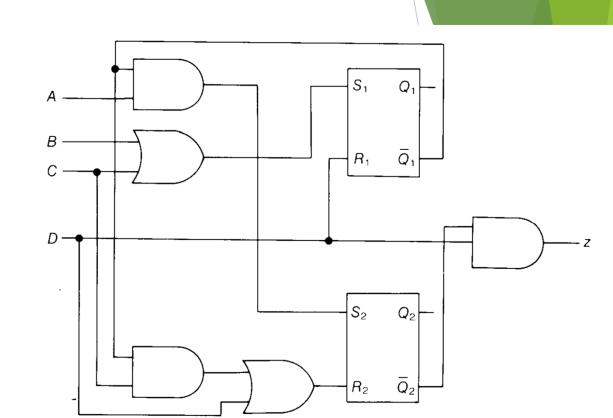
HW Implementation



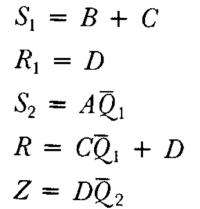
Example 3 Analyze the pulse-mode circuit of Figure

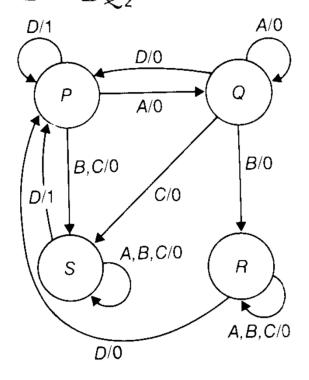
The equations of the states and the output are easily written as:

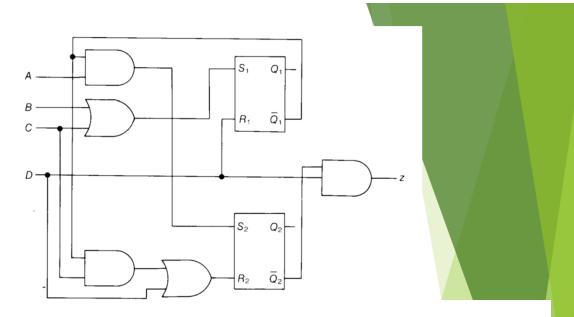
 $S_{1} = B + C$ $R_{1} = D$ $S_{2} = A\overline{Q}_{1}$ $R = C\overline{Q}_{1} + D$ $Z = D\overline{Q}_{2}$



Since it is a pulse-mode circuit the only input conditions that need to be considered are ABCD = 1000, 0100, 0010, and 0001.







PS	NS. z							
$Q_1 Q_2$	А	В	С	D				
P 00 Q 01 R 11 S 10	01.0 01.0 11,0 10,0	10,0 11,0 11,0 11,0 10,0	10.0 10,0 11.0 10,0	00.1 00.0 00.0 00.1				