
ALEXANDRIA UNIVERSITY
FACULTY OF ENGINEERING

HARDWARE IMPLEMENTATION OF ADVANCED
ENCRYPTION STANDARD ON FIELD PROGRAMMABLE

GATE ARRAY

A Thesis

Presented to the Graduate School,
Faculty of Engineering, Alexandria University,

In Partial Fulfillment of the
Requirements for the Degree

Of

Master of Science

In

Electrical Engineering

By

Mohammed Morsy Naeem Farag
B.Sc. In Electrical Engineering (Communications and Electronics), June 2003

2006

HARDWARE IMPLEMENTATION OF ADVANCED
ENCRYPTION STANDARD ON FIELD PROGRAMMABLE

GATE ARRAY

Presented by

Eng. Mohammed Morsy Naeem Farag

For the Degree of

Master of Science

In

Electrical Engineering

Examiners’ Committee: Approved

Prof. Dr. Hasan Elkamshoshy …….………………………
Faculty of Engineering, Alexandria University

Prof. Dr. Magdy Fekry Ragaey .…………………………..
Faculty of Engineering, Cairo University

Prof. Dr. Mohammed Rizk …………………………….
Faculty of Engineering, Alexandria University

Vice Dean for Graduate Studies and Research,

Prof. Dr. Hossam Mohammed Fahmy Ghanem ……………………………
Faculty of Engineering, Alexandria University

Advisors’ Committee: Approved

Dr. Mohammed Rizk ...….………………………
Faculty of Engineering, Alexandria University

Dr. Hanan Hosny .…………………………..
Faculty of Engineering, Alexandria University

Dr. Haniah Farag .…………………………..
Faculty of Engineering, Alexandria University

i

ACKNOWLEDGEMENTS

First, I start my book with thanking GOD for helping me in completing this thesis and
presenting it in the following form. Then, I would like to express my deepest gratitude to my
parents for supporting me during every moment in my life. Certainly, I would like to express
my sincere gratitude to Prof. Dr. Mohamed Rizk for his advice & concern that was invaluable
to this work. Also, I wish to express my thanks to the staff of faculty of engineering,
Alexandria University for their friendly cooperation. Finally, thanks to everyone who helped
me to make this work come to reality.

Mohammed Morsy
 November, 2006

ii

ABSTRACT

The Advanced Encryption Standard (AES) is the new standard for cryptography and
has gained wide support as means to secure digital data. In this thesis, we explored design and
implementation approaches of the AES on field programmable gate arrays (FPGAs). We
introduced the heuristic design techniques of the AES substitution boxes and we suggested an
AES substitution box with good cryptographic properties. Tradeoffs of speed vs. area that are
inherent in the design of a security processor are explored. Two implementations of the AES
on Xilinx Virtex 4 FPGA are introduced, the first design is called optimized area AES which
is based on the basic architecture of the AES, the second one is called optimized speed AES
which is based on the sub-pipelined architecture of the AES. An AES crypto processor with
serial interface was implemented and it could be used with any of our designed encryptor or
decryptor. Two applications of the AES algorithm in feedback mode of operation were
implemented on Xilinx Virtex 4 FPGA, one of the applications is the AES key wrap algorithm
which could be used in the key transfer in unsecured communication channel, and the other
application is the AES block cipher based deterministic random bit generator (DRBG) which
could be used as a pseudo random number generator (PRNG). Loop unrolled architecture is
used in the implementation of the AES in feedback mode of operation. A complete
simulations and implementation results are provided for all of our designs.

iii

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. ADVANCED ENCRYPTION STANDARD ...4

2.1. BRIEF INTRODUCTION TO CRYPTOGRAPHY ...4
2.2. TYPES OF CRYPTOGRAPHIC ALGORITHMS...4

2.2.1. Secret Key Cryptography...5
2.2.2. Public-Key Cryptography ..8
2.2.3. Hash Functions ..9

2.3. HISTORY OF AES ALGORITHM..9
2.4. MATHEMATICAL BACKGROUND FOR THE AES ...10

2.4.1. Polynomial Addition ..11
2.4.2. Polynomial Multiplication ...12
2.4.3. Multiplication by x ...12
2.4.4. Polynomials with Coefficients in GF(28) ...13

2.5. THE AES CIPHER/ DECIPHER ALGORITHM ...14
2.5.1. SubBytes Transformation (Forward and Inverse Transformations)18
2.5.2. ShiftRows Transformation (Forward and Inverse Transformations)20
2.5.3. MixColumns Transformation (Forward and Inverse Transformations)..........21
2.5.4. AddRoundKey Transformation (Forward and Inverse Transformations).......22

2.6. AES KEY EXPANSION ALGORITHM ..23
2.7. EQUIVALENT INVERSE CIPHER..24

2.7.1. Interchanging InvShiftRows and InvSubBytes...25
2.7.2. Interchanging AddRoundKey and InvMixColumns ...25

3. HEURISTIC DESIGN OF RIJNDAEL S-BOX ...26
3.1. BOOLEAN FUNCTION AND S-BOX THEORY..27
3.2. CRYPTOGRAPHIC CRITERIA FOR SINGLE-OUTPUT FUNCTIONS AND S-BOXES........28
3.3. COST FUNCTIONS..29

3.3.1. Traditional Cost Functions..29
3.3.2. Spectrum Based Cost Functions ..30

3.4. OPTIMIZATION ALGORITHMS OF A SINGLE BOOLEAN FUNCTION..........................31
3.4.1. Hill Climbing ...32
3.4.2. Simulated Annealing ..34
3.4.3. Tabu Search ...36
3.4.4. Genetic Algorithms ..38
3.4.5. Comparison between Different Optimization Results......................................42

3.5. OPTIMIZATION ALGORITHMS OF S-BOX ..42

4. IMPLEMENTATION APPROACHES FOR THE AES.......................................45
4.1. ARCHITECTURAL OPTIMIZATION ..45

4.1.1. Architectures of AES Encryptor/ Decryptor ..45
4.1.2. Architectural Optimization for Non-Feedback Modes.....................................47
4.1.3. Architectural Optimization for Feedback Mode ..49

4.2. ALGORITHMIC OPTIMIZATION...49

iv

4.2.1. Implementation of Separate Transformations..50
4.2.2. Implementation of SubBytes/ InvSubBytes...50
4.2.3. Implementation of MixColumns/ InvMixColumns ..50
4.2.4. Look-Up Table Implementation of the Whole Round Unit...............................58
4.2.5. Implementation of Key Expansion ...61

4.3. JOINT IMPLEMENTATION ISSUES OF ENCRYPTOR/ DECRYPTOR61
4.3.1. Joint Implementation of SubBytes and InvSubBytes ..61
4.3.2. Resource Sharing in MixColumns and InvMixColumns63
4.3.3. Resource Sharing of Generating Roundkeys in Encryption and Decryption...64

5. SUBBYTES TRANSFORMATION OPTIM IZATION METHODS66
5.1. AN EFFICIENT S-BOX COMPUTATION..67
5.2. BIT-PARALLEL ARCHITECTURE OF STANDARD AND COMPOSITE FIELD OPERATIONS
 70

5.2.1. GF(28) Computations...70
5.2.2. GF(24) Computations...70
5.2.3. GF(22) Computations, I(x) = x2 + x + 1 ...70

5.3. IMPLEMENTATIONS..71
5.4. COMPARISON BETWEEN DIFFERENCE S-BOX IMPLEMENTATIONS73

6. HARDWARE IMPLEMENTATION OF AES...74
6.1. INTRODUCTION TO DIGITAL VLSI DESIGN ON FPGAS ...74

6.1.1. Introduction to Digital VLSI Design..74
6.1.2. Top down design methodology...75
6.1.3. Introduction to FPGA technology..76

6.2. HARDWARE BASIC DECISIONS AND CONSIDERATIONS..78
6.3. OPTIMIZED AREA AES ENCRYPTOR/ DECRYPTOR ..79

6.3.1. Hardware Architecture ..79
6.3.2. Hardware Implementation Results ..82

6.4. OPTIMIZED SPEED AES ENCRYPTOR/ DECRYPTOR ...86
6.4.1. Hardware Architecture ..86
6.4.2. Hardware Implementation Results ..87

6.5. COMPARISON BETWEEN HARDWARE IMPLEMENTATIONS OF AES90
6.5.1. Comparison between Optimized Area and Optimized Speed AES...................90
6.5.2. Comparison of some Related Work for FPGAs ...91

6.6. AES CRYPTO PROCESSOR...92
6.6.1. Crypto Processor Hardware Circuit..92
6.6.2. Crypto Processor Functional Simulation Results..94
6.6.3. Crypto Processor Timing Simulation Results ..95

7. APPLICATIONS OF AES ..96
7.1. AES KEY WRAP ...96

7.1.1. Introduction..96
7.1.2. Overview ..97
7.1.3. Key Wrapping Algorithm ...97

7.2. HARDWARE IMPLEMENTATION OF AES KEY WRAP..101
7.2.1. Hardware Architecture ..101
7.2.2. Functional Simulation Results ...102
7.2.3. Hardware Implementation Results ..103

v

7.3. DRBGS BASED ON AES BLOCK CIPHER ..103
7.3.1. DRBG Based on AES in CTR Mode...105
7.3.2. DRBG Based on AES in OFB Mode ..105

7.4. HARDWARE IMPLEMENTATION OF THE AES DRBG ...106
7.4.1. Hardware Architecture ..106
7.4.2. Functional Simulation Results ...107
7.4.3. Hardware Implementation Results ..107

8. CONCLUSION AND FUTURE WORK ...109

vi

LIST OF TABLES

TABLE 2–1: AES PARAMETERS ..15
TABLE 2–2: AES S-BOXES ...19
TABLE 2–3: RCON [J] VALUES..24
TABLE 3–1: COMPARISON BETWEEN NONLINEARITY AND AUTOCORRELATION FOR DIFFERENT

OPTIMIZATION ALGORITHMS ...42
TABLE 3–2: RIJNDEAL LIKE S-BOX ..44
TABLE 4–1: INDIVIDUAL BIT EXPRESSION FOR CONSTANT MULTIPLICATIONS56
TABLE 4–2: SUBSTRUCTURE SHARING IN INDIVIDUAL BIT CALCULATION FOR THE

MIXCOLUMNS TRANSFORMATION AFTER THE FIRST ROUND ..57
TABLE 4–3: SUBSTRUCTURE SHARING IN INDIVIDUAL BIT CALCULATION FOR THE

MIXCOLUMNS TRANSFORMATION AFTER THE SECOND ROUND57
TABLE 4–4: SUBSTRUCTURE SHARING IN INDIVIDUAL BIT CALCULATION FOR THE

INVMIXCOLUMNS TRANSFORMATION...57

TABLE 4–5: EXTRACTION OF S–1-BOX FROM T–1-BOX...61
TABLE 5–1: COMPLEXITY OF GF(24)2) INVERSION ..72
TABLE 5–2: COMPARISON OF VARIOUS S-BOX ARCHITECTURES (0.18 _M 1.8 V CMOS

STANDARD CELL, 1 GATE = 2 WAY-NAND) ..73
TABLE 6–1: ENCRYPTOR/ DECRYPTOR SIGNALS NAMES AND FUNCTIONS..............................83
TABLE 6–2: IMPLEMENTATION RESULTS FOR SEPARATE CIPHER/ DECIPHER

TRANSFORMATIONS...84
TABLE 6–3: FPGA (4VLX60FF668-12) DEVICE UTILIZATION AND TIMING CHARACTERISTICS

OF OPTIMIZED AREA AES..85
TABLE 6–4: OPTIMIZED SPEED SUBBYTES AND INVSUBBYTES IMPLEMENTATION RESULTS.89
TABLE 6–5: FPGA (4VLX60FF668-12) DEVICE UTILIZATION AND TIMING CHARACTERISTICS

OF OPTIMIZED SPEED AES...89
TABLE 6–6: COMPARISON BETWEEN DIFFERENCE FPGA IMPLEMENTATIONS OF AES..........91
TABLE 7–1: IMPLEMENTATION RESULTS OF THE KEY WRAP/ UNWRAP ALGORITHM.............103
TABLE 7–2: IMPLEMENTATION RESULTS OF THE DRBG BASED ON THE AES IN CTR AND

OFB MODES ..108

vii

LIST OF FIGURES

FIGURE 2–1: THREE TYPES OF CRYPTOGRAPHY (SECRET KEY, PUBLIC KEY AND HASH
FUNCTION)..5

FIGURE 2–2: ELECTRONIC CODE BOOK (ECB) MODE ..6
FIGURE 2–3: CIPHER BLOCH CHAINING (CBC) MODE..6
FIGURE 2–4: CIPHER FEEDBACK (CFB) MODE ...7
FIGURE 2–5: OUTPUT FEEDBACK (OFB) MODE..7
FIGURE 2–6: COUNTER (CTR) MODE ...8
FIGURE 2–7: TYPES OF CRYPTOGRAPHY AND ITS EXAMPLES...9
FIGURE 2–8: AES ENCRYPTION AND DECRYPTION...16
FIGURE 2–9: AES ENCRYPTION ROUND ...17
FIGURE 2–10: AES BYTE LEVEL OPERATIONS ..18
FIGURE 2–11: AES ROW AND COLUMN PROPERTIES..21
FIGURE 2–12: KEY EXPANSION PSEUDO-CODE ...23
FIGURE 2–13: AES KEY EXPANSION ..24
FIGURE 2–14: EQUIVALENT INVERSE CIPHER ...25
FIGURE 3–1: BOOLEAN FUNCTION HILL CLIMBING ALGORITHM ..34
FIGURE 3–2: HILL CLIMBING ALGORITHM OUTPUT (NONLINEARITY VS ITERATION NUMBER)

...34
FIGURE 3–3: BASIC SIMULATED ANNEALING FOR MINIMIZATION PROBLEMS35
FIGURE 3–4: SIMULATD ANNEALING ALGORITHM OUTPUT (NONLINEARITY VS ITERATION

NUMBER)...36
FIGURE 3–5: SIMULATD ANNEALING ALGORITHM OUTPUT (NONLINEARITY &

AUTOCORRELATION VS ITERATION NUMBER)..36
FIGURE 3–6: BASIC TABU SEARCH PROCEDURE ...37
FIGURE 3–7: TABU SEARCH ALGORITHM OUTPUT (NONLINEARITY & AUTOCORRELATION VS

ITERATION NUMBER)...38
FIGURE 3–8: TABU SEARCH ALGORITHM OUTPUT (NONLINEARITY & AUTOCORRELATION VS

ITERATION NUMBER)...38
FIGURE 3–9: BREEDING SCHEME OF THE GENETIC ALGORITHM ...40
FIGURE 3–10: GENETIC ALGORITHM TO IMPROVE NONLINEARITY OF BOOLEAN FUNCTION.40
FIGURE 3–11: GENETIC ALGORITHM OUTPUT (NONLINEARITY VS ITERATION NUMBER)......41
FIGURE 3–12: GENETIC ALGORITHM OUTPUT (NONLINEARITY & AUTOCORRELATION VS

ITERATION NUMBER)...41
FIGURE 3–13: S-BOX GENETIC ALGORITHM OUTPUT (NONLINEARITY VS ITERATION NUMBER)

...42
FIGURE 3–14: S-BOX SIMULATED ANNEALING OUTPUT (NONLINEARITY VS ITERATION

NUMBER)...43
FIGURE 3–15: TABU SEARCH S-BOX OUTPUT (NONLINEARITY VS ITERATION NUMBER)43
FIGURE 3–16: S-BOX GENETIC ALGORITHM OUTPUT (NONLINEARITY & AUTOCORRELATION

VS ITERATION NUMBER) ..44
FIGURE 4–1: THREE TYPES OF ARCHITECTURE OF ENCRYPTOR/DECRYPTOR WITH A BASIC

REFERENCE ARCHITECTURE: (A) PIPELINED ARCHITECTURE, (B) SUB-PIPELINED
ARCHITECTURE, (C) LOOP UNROLLED ARCHITECTURE, (D) BASIC REFERENCE
ARCHITECTURE ...46

FIGURE 4–2: BLOCK DIAGRAM OF THE AES SYSTEM ..50

viii

FIGURE 4–3: BLOCK DIAGRAM FOR STRAIGHTFORWARD IMPLEMENTATION OF THE
MIXCOLUMNS TRANSFORMATION...51

FIGURE 4–4: BLOCK DIAGRAM FOR STRAIGHT FORWARD IMPLEMENTATION OF THE
INVMIXCOLUMNS TRANSFORMATION...52

FIGURE 4–5: BLOCK DIAGRAM OF XTIME..52
FIGURE 4–6: BLOCK DIAGRAM FOR SUBSTRUCTURE SHARING IMPLEMENTATION OF

MIXCOLUMNS TRANSFORMATION...53
FIGURE 4–7: BLOCK DIAGRAM FOR SUBSTRUCTURE SHARING IMPLEMENTATION OF THE

INVMIXCOLUMNS TRANSFORMATION...54
FIGURE 4–8: BLOCK DIAGRAM FOR ALTERNATIVE SUBSTRUCTURE SHARING

IMPLEMENTATION OF THE INVMIXCOLUMNS TRANSFORMATION.55
FIGURE 4–9: BLOCK DIAGRAM FOR BIT-WISE IMPLEMENTATION OF THE MIXCOLUMNS

TRANSFORMATION ..58
FIGURE 4–10: JOINT IMPLEMENTATION OF THE SUBBYTES AND THE INVSUBBYTES

TRANSFORMATIONS...62
FIGURE 4–11: JOINT IMPLEMENTATION OF THE MIXCOLUMNS AND THE INVMIXCOLUMNS

TRANSFORMATIONS (BYTES IN THE FIRST ROW OF THE STATE)63
FIGURE 4–12: JOINT IMPLEMENTATION OF THE MIXCOLUMNS AND THE INVMIXCOLUMNS

TRANSFORMATIONS (ONE COLUMN IN THE STATE) ..64
FIGURE 4–13: JOINT IMPLEMENTATION OF KEY EXPANSION IN ENCRYPTOR AND DECRYPTOR.

..64
FIGURE 5–1: S-BOX COMPUTATION AND INVERSION IN GF((24)2)...71
FIGURE 5–2: MULTIPLICATION IN GF((24)2)..72
FIGURE 5–3: FIELD MAPPING (A) AND INVERSE MAPPING (B)...73
FIGURE 6–1: BEHAVIORAL LEVEL OF ABSTRACTION PYRAMID..75
FIGURE 6–2: DESIGN DOMAIN FOR DIFFERENT LEVELS OF DESIGN ABSTRACTION76
FIGURE 6–3: STRUCTURE OF THE VIRTEX FPGA ..77
FIGURE 6–4: OPTIMIZED AREA CIPHER/ DECIPHER ARCHITECTURE79
FIGURE 6–5: CIPHER KEY EXPANSION ARCHITECTURE ..79
FIGURE 6–6: DECIPHER KEY EXPANSION ARCHITECTURE ..80
FIGURE 6–7: A. CIPHER ROUND, B. DECIPHER ROUND...81
FIGURE 6–8: KEY EXPANSION ROUND ARCHITECTURE...81
FIGURE 6–9: ENCRYPTOR TOP LEVEL ENTITY...82
FIGURE 6–10: DECRYPTOR TOP LEVEL ENTITY...82
FIGURE 6–11: BEHAVIORAL SIMULATION OF OPTIMIZED AREA AES ENCRYPTOR.................84
FIGURE 6–12: BEHAVIORAL SIMULATION OF OPTIMIZED AREA AES DECRYPTOR.................84
FIGURE 6–13: OPTIMIZED SPEED CIPHER/ DECIPHER ARCHITECTURE87
FIGURE 6–14: OPTIMIZED SPEED KEY EXPANSION ARCHITECTURE87
FIGURE 6–15: ENCRYPTOR/ DECRYPTOR TOP LEVEL ENTITY...88
FIGURE 6–16: BEHAVIORAL SIMULATION OF OPTIMIZED SPEED AES ENCRYPTOR................88
FIGURE 6–17: BEHAVIORAL SIMULATION OF OPTIMIZED TIME AES DECRYPTOR..................89
FIGURE 6–18: AES CRYPTO PROCESSOR ...93
FIGURE 6–19: CONTROL UNIT FSM..94
FIGURE 6–20: BEHAVIORAL SIMULATION OF AES CRYPTO PROCESSOR94
FIGURE 6–21: POST PLACE AND ROUTE SIMULATION OF AES CRYPTO PROCESSOR................95
FIGURE 7–1: MOTION OF KEY WRAP ALGORITHM..98
FIGURE 7–2: MOTION OF KEY UNWRAP ALGORITHM ...100
FIGURE 7–3 : LOOP UNROLLED ARCHITECTURE..102

ix

FIGURE 7–4: KEY EXPANSION ARCHITECTUR...102
FIGURE 7–5: KEY WRAP/ UNWRAP TOP LEVEL ENTITY ..102
FIGURE 7–6: FUNCTIONAL SIMULATION RESULTS OF KEY WRAP ALGORITHM102
FIGURE 7–7: FUNCTIONAL SIMULATION OF KEY UNWRAP ALGORITHM103
FIGURE 7–8: COUNTER MODE AES DRBG...105
FIGURE 7–9: OFB MODE AES DRBG...106
FIGURE 7–10: AES DRBG TOP LEVEL ENTITY..106
FIGURE 7–11: FUNCTIONAL SIMULATION OF THE AES CTR DRBG107
FIGURE 7–12: FUNCTIONAL SIMULATION OF THE AES OFB DRBG107

x

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard
ANSI American National Standards Institute
ASIC Application Specific Integrated Circuit
BDD Binary Decision Diagram
CAD Computer Aided Design
CBC Cipher Block Chaining
CFB Cipher Feedback
CLB Configurable Logic Block
CPLD Complex Programmable Logic Device
CTR Counter
DES Data Encryption Standard
DLL Delay Looked Loop
DRBG Deterministic Random Bit Generator
ECB Electronic Codebook
EEPROM Electrically Erasable Programmable Read Only

Memory
FB Feedback
FIPS Federal Information Processing Standards
FPGA Field Programmable Gate Array
GF Galois Field
HDL Hardware Description Language
IC Integrated Circuit
IP Intellectual Property
IV Initial Value
KED Key Encryption Data
KEK Key Encryption Key
LC Logic Cell
LUT Look Up Table
NDRBG Non- Deterministic Random Bit Generator
NFB Non Feedback
NIST National Institute of Standards and Technology
Nr Number of Rounds
OFB Output Feedback
PKC Public Key Cryptography
PKI Public Key Infrastructure
PRNG Pseudo Random Number Generator
RAM Random Access Memory
RNG Random Number Generator
ROM Read Only Memory

xi

S-Box Substitution Box
SKC Secret Key Cryptography
SOP Sum of Products
SRAM Static Random Access Memory
SSL Secure Sockets Layer
TLS Transport Layer Security
VHDL Very High Speed Hardware Description Language

1

C h a p t e r 1

INTRODUCTION

Since privacy issues and network security are emerging due to the wide proliferation of
Internet, the research in protecting information is increasing. Cryptographic algorithms,
also known as ciphers, form the fundamental aspect within this research field. The most
used and analyzed cryptographic algorithm of the last 20 years, is the Data Encryption
Standard (DES) [1]. With the introduction of this cipher in the early 70s, there were
several accusations concerning hidden back-doors, not transparent S-boxes and the length
of the key. Despite all the criticism, DES became the encryption standard in 1977. In 1983
it was shown [1] that the cipher is vulnerable due to its short key length. Considering the
fact that the computing capacity is always increasing, the vulnerability of DES was a
thorn in the eye. Therefore, an enhanced version of the cipher was introduced. This
enhanced version known as Triple-DES [1] performs DES three times sequentially and
therefore it is more secure than DES. However, the speed performance of Triple-DES on
software based platforms was not interesting for practical applications. Therefore in 1997,
the National Institute of Standards and Technology (NIST) organized a contest in order to
develop a new cryptographic algorithm standard which would replace both DES and
Triple-DES. More precisely, the main objective was to develop an algorithm that would at
least offer the same security level which was provided by Triple-DES, but that should
have higher performance than the performance of Triple-DES. Fifteen new block
cryptographic algorithms were submitted [2]. On November 26, 2001, the algorithm
known as Rijndael (pronounced Rhine-dall) was chosen to be the replacement for DES
and since then it is known as the Advanced Encryption Standard (AES). This algorithm
satisfies the following National Institute of Standard and Technology (NIST) statement
:"Assuming that one could build a machine that could recover a DES key in a second,
then it would take that machine approximately 149 thousand-billion (149 trillion) years to
crack a 128-bit AES key. To put that into perspective, the universe is believed to be less
than 20 billion years old." The development of high speed networks, has directed the
research framework of protecting information, to a broader aspect then that of solely
developing ciphers. Cipher performance, key management, policies and reliability aspects
are important topics nowadays. These days, a lot of network security services and systems
are implemented, such as Public Key Infrastructure (PKI) systems, web appliances, high-
speed routers and Firewalls, that are used for securing information. The communication in
these systems is based on various protocols, for example the Secure Sockets Layer (SSL)
protocol, the IP Security Protocol (IPSec) and the Transport Layer Security (TLS)
protocol. Such protocols are not limited to one or two cryptographic algorithms, but they
often use a combination of various cryptographic algorithms. The choice for a certain
cipher within a communication process depends on several factors such as company
policies on encryption strength and government restrictions on encryption export.
Considering these facts and the fact that cryptographic algorithms are relative frequently
upgraded, cryptographic flexibility and high speed performance are requirements in
network systems.

 2

The choice for a certain platform (e.g. software, ASICs or FPGAs) for implementing
cryptographic applications is driven by several design aspects such as performance, costs,
power and flexibility. The performance, costs and power aspects are expressed by well
known metrics. However, these metrics do not completely characterize the designs that
are implemented in reconfigurable hardware or software. For these designs, flexibility in
redesign or hardware reconfiguration is also an important design issue. Flexibility is
defined by IEEE as: "the ease with which a system or component can be modified for use
in applications or environments other than those for which it was specifically designed"
[4].

Since DES, and therefore also Triple-DES [3], was primarily designed for hardware
based platforms, both cryptographic algorithms were often implemented in Application
Specific Integrated Circuits (ASIC). These systems showed adequate speed performance.

Also the AES implemented in ASIC results in high speed performance [5].
Furthermore, since ASICS are often produced in large quantities, they have favorable
costs. However, since ASICs are completely hard-wired they lack flexibility. Their
redesign is a complex and expensive process. Every change of the IC design leads to new
an IC process mask, which is one of the major cost factors. Moreover, a prediction for
future semiconductor technologies is that the cost of the mask will grow exponentially and
will soon dominate the total cost of the production process. In short, although ASICs
based solutions show adequate speed performance they are not suitable for demanding
cryptographic network systems.

In contrast to ASIC technology, a Field-Programmable Gate Array (FPGA) is fully
reprogrammable. FPGAs provide reconfigurable hardware, flexible interconnect, and
field-programmable ability without introducing extra costs. Therefore, substantial amount
of work has been reported on various cryptographic algorithms implemented on FPGAs.

While FPGAs used to be selected for lower speed/complexity/volume designs in the
past, today’s FPGAs easily push the 500 MHz performance barrier. With unprecedented
logic density increases and a host of other features, such as embedded processors, DSP
blocks, clocking, and high-speed serial at ever lower price points, FPGAs are a
compelling proposition for almost any type of design. Although these solutions show
adequate speed performance and provide flexibility, they are not interesting for mass
productions, since the cost of FPGA devices are still a bottleneck. FPGA devices are
expensive compared to ASIC and software based solutions, but at the same time the
FPGA devices have other advantages such as simple design cycle, faster time to test and
market and field reprogram ability. These advantages besides the high speed of recent
FPGAs devices make the FPGAs are the best solutions for the research purposes.

Software based solutions, e.g. targeting applications on general-purpose
microprocessors, digital signal processors or microcontrollers are fully reprogrammable.
Beside the flexibility aspect, the cost aspect of such solutions is most favorable. However,
the disadvantage of these solutions is that the speed performance is significantly lower
than that based on ASICs and FPGAs. Therefore, even software based solutions are not
suitable for some demanding cryptographic network systems.

 3

When selecting the AES algorithm, both efficient software and hardware
implementations were taken into consideration. This thesis addresses efficient hardware
implementation approaches for the AES algorithm and introduces two implementation
approaches (Optimized Area and Optimized speed) for the AES algorithm on FPGA (field
programmable gate array).

The organization of this thesis will be as follows:

 Chapter 2 provides an introduction to cryptography and its types (with focus on private
key cryptography and its modes of operation) and provides a detailed explanation for the
AES algorithm with a brief mathematical background for the algorithm.

 Chapter 3 discusses the cryptographic properties of good substitution boxes (S-boxes)
and the heuristic optimization techniques used to improve this properties for a single
Boolean function and S-box. Also this chapter introduces a suggested S-box which could
be used in the AES algorithm.

 Chapter 4 addresses various approaches for efficient hardware implementation of the
AES from the architectural and algorithmic point of view (area and time are the
optimization goal in this chapter). Also this chapter discusses Resources sharing issues
between encryptor and decryptor.

 Chapter 5 addresses various implementation methods of SubBytes transformation
which is considered the most area and time consuming transformation in the AES
algorithm. In this chapter we will provide a detailed explanation for the implementation
method which we will use in our design for the algorithm with a comparison between
different used methods.

 Chapter 6 introduces our hardware implementation and simulation results of the
optimized area AES (AES encryptor and decryptor with minimum area resources) and
optimized speed AES (AES encryptor and decryptor with minimum delay) using various
design methods addressed in Chapter 4 and Chapter 5 with a comparison between the two
implemented hardware and other previous implemented circuits. Finally we will introduce
our implementation and simulation results for AES crypto processor with serial interface
which could be used to make a practical test for any of our designed encryptors or
decryptors.

 Chapter 7 addresses two applications of the AES with there hardware implementation
on FPGA . The first application is the AES key wrap/ unwrap algorithm. The second
application is the deterministic random number generator (DRBG) based on the AES in
the counter (CTR) and output feedback (OFB) modes of operation.

 4

C h a p t e r 2

ADVANCED ENCRYPTION STANDARD

2.1. Brief Introduction to Cryptography

Cryptography is the science of writing in secret code and is an ancient art; the first
documented use of cryptography in writing dates back to circa 1900 B.C. when an
Egyptian scribe used non-standard hieroglyphs in an inscription. Some experts argue that
cryptography appeared spontaneously sometime after writing was invented, with
applications ranging from diplomatic missives to war-time battle plans. It is no surprise,
then, that new forms of cryptography came soon after the widespread development of
computer communications. In data and telecommunications, cryptography is necessary
when communicating over any un-trusted medium, which includes just about any
network, particularly the Internet.

• Within the context of any application-to-application communication, there are
some specific security requirements, including:

• Authentication: The process of proving one's identity. (The primary forms of
host-to-host authentication on the Internet today are name-based or address-
based, both of which are notoriously weak.).

• Privacy/confidentiality: Ensuring that no one can read the message except the
intended receiver.

• Integrity: Assuring the receiver that the received message has not been altered
in any way from the original.

• Non-repudiation: A mechanism to prove that the sender really sent this
message.

Cryptography, then, not only protects data from theft or alteration, but can also be used
for user authentication. There are, in general, three types of cryptographic schemes
typically used to accomplish these goals: secret key (or symmetric) cryptography, public-
key (or asymmetric) cryptography, and hash functions, each of which is described below.
In all cases, the initial unencrypted data is referred to as plaintext. It is encrypted into
ciphertext, which will in turn (usually) be decrypted into usable plaintext.

2.2. Types of Cryptographic Algorithms

There are several ways of classifying cryptographic algorithms [6]. They will be
categorized based on the number of keys that are employed for encryption and decryption,
and further defined by their application and use. The three types of algorithms that will be
discussed are shown in Figure 2–1:

• Secret Key Cryptography (SKC): Uses a single key for both encryption and
decryption.

• Public Key Cryptography (PKC): Uses one key for encryption and another for
decryption.

 5

• Hash Functions: Uses a mathematical transformation to irreversibly "encrypt"
information.

Figure 2–1: Three types of cryptography (Secret Key, Public Key and Hash Function)

2.2.1. Secret Key Cryptography

With secret key cryptography, a single key is used for both encryption and decryption.
As shown in Figure 2–1-A, the sender uses the key (or some set of rules) to encrypt the
plaintext and sends the ciphertext to the receiver. The receiver applies the same key (or
rule set) to decrypt the message and recover the plaintext. Because a single key is used for
both functions, secret key cryptography is also called symmetric encryption.

With this form of cryptography, it is obvious that the key must be known to both the
sender and the receiver; that, in fact, is the secret. The biggest difficulty with this
approach, of course, is the distribution of the key.

Secret key cryptography schemes are generally categorized as being either stream
ciphers or block ciphers. Stream ciphers operate on a single bit (byte or computer word) at
a time and implement some form of feedback mechanism so that the key is constantly
changing. A block cipher is so-called because the scheme encrypts one block of data at a
time using the same key on each block. In general, the same plaintext block will always
encrypt to the same ciphertext when using the same key in a block cipher whereas the
same plaintext will encrypt to different ciphertext in a stream cipher.

Stream ciphers come in several flavors but two are worth mentioning here. Self-
synchronizing stream ciphers calculate each bit in the keystream as a function of the
previous n bits in the keystream. It is termed "self-synchronizing" because the decryption
process can stay synchronized with the encryption process merely by knowing how far
into the n-bit keystream it is. One problem is error propagation; a garbled bit in
transmission will result in n garbled bits at the receiving side. Synchronous stream ciphers
generate the keystream in a fashion independent of the message stream but by using the

 6

same keystream generation function at sender and receiver. While stream ciphers do not
propagate transmission errors, they are, by their nature, periodic so that the keystream will
eventually repeat.

Block ciphers can operate in one of several modes; the following five are the most
important [7], [8]:

• Electronic Codebook (ECB) mode is the simplest, most obvious application:
the secret key is used to encrypt the plaintext block to form a ciphertext block.
Two identical plaintext blocks, then, will always generate the same ciphertext
block as shown in Figure 2–2. Although this is the most common mode of
block ciphers, it is susceptible to a variety of brute-force attacks.

Figure 2–2: Electronic Code Book (ECB) Mode

• Cipher Block Chaining (CBC) mode adds a feedback mechanism to the
encryption scheme. In CBC, the plaintext is exclusively-ORed (XORed) with
the previous ciphertext block prior to encryption as shown in Figure 2–3. In this
mode, two identical blocks of plaintext never encrypt to the same ciphertext.

Figure 2–3: Cipher Bloch Chaining (CBC) Mode

• Cipher Feedback (CFB) mode is a block cipher implementation as a self-
synchronizing stream cipher as shown in Figure 2–4. CFB mode allows data to
be encrypted in units smaller than the block size, which might be useful in some
applications such as encrypting interactive terminal input. If we were using 1-
byte CFB mode, for example, each incoming character is placed into a shift
register the same size as the block, encrypted, and the block transmitted. At the

 7

receiving side, the ciphertext is decrypted and the extra bits in the block (i.e.,
everything above and beyond the one byte) are discarded.

Figure 2–4: Cipher Feedback (CFB) Mode

• Output Feedback (OFB) mode is a block cipher implementation conceptually
similar to a synchronous stream cipher as shown in Figure 2–5. OFB prevents
the same plaintext block from generating the same ciphertext block by using an
internal feedback mechanism that is independent of both the plaintext and
ciphertext bitstreams.

Figure 2–5: Output Feedback (OFB) Mode

• The Counter Mode is a confidentiality mode that features the application of
the forward cipher to a set of input blocks, called counters, to produce a
sequence of output blocks that are exclusive-ORed with the plaintext to produce
the ciphertext, and vice versa as shown in Figure 2–6. The sequence of counters
must have the property that each block in the sequence is different from every
other block. This condition is not restricted to a single message: across all of the

 8

messages that are encrypted under the given key, all of the counters must be
distinct.

Figure 2–6: Counter (CTR) Mode

2.2.2. Public-Key Cryptography

Public-key cryptography has been said to be the most significant new development in
cryptography in the last 300-400 years. Modern PKC was first described publicly by
Stanford University professor Martin Hellman and graduate student Whitfield Diffie in
1976. Their paper described a two-key crypto system in which two parties could engage in
a secure communication over a non-secure communications channel without having to
share a secret key.

PKC depends upon the existence of so-called one-way functions, or mathematical
functions that are easy to computer whereas their inverse function is relatively difficult to
compute. Let me give you two simple examples:

1. Multiplication vs. factorization: Suppose I tell you that I have two numbers,
9 and 16, and that I want to calculate the product; it should take almost no
time to calculate the product, 144. Suppose instead that I tell you that I have
a number, 144, and I need you tell me which pair of integers I multiplied
together to obtain that number. You will eventually come up with the
solution but whereas calculating the product took milliseconds, factoring
will take longer because you first need to find the 8 pair of integer factors
and then determine which one is the correct pair.

2. Exponentiation vs. logarithms: Suppose I tell you that I want to take the
number 3 to the 6th power; again, it is easy to calculate 36=729. But if I tell
you that I have the number 729 and want you to tell me the two integers that
I used, x and y so that logx 729 = y, it will take you longer to find all
possible solutions and select the pair that I used.

While the examples above are trivial, they do represent two of the functional pairs that
are used with PKC; namely, the ease of multiplication and exponentiation versus the

 9

relative difficulty of factoring and calculating logarithms, respectively. The mathematical
"trick" in PKC is to find a trap door in the one-way function so that the inverse calculation
becomes easy given knowledge of some item of information.

Generic PKC employs two keys that are mathematically related although knowledge of
one key does not allow someone to easily determine the other key. One key is used to
encrypt the plaintext and the other key is used to decrypt the ciphertext. The important
point here is that it does not matter which key is applied first, but that both keys are
required for the process to work (Figure 2–1-B). Because pair of keys is required, this
approach is also called asymmetric cryptography.

In PKC, one of the keys is designated the public key and may be advertised as widely
as the owner wants. The other key is designated the private key and is never revealed to
another party.

2.2.3. Hash Functions

Hash functions (also called message digests and one-way encryption) are algorithms
that in some sense use no key (Figure 2–1-C). Instead, a fixed-length hash value is
computed based upon the plaintext that makes it impossible for either the contents or
length of the plaintext to be recovered. Hash algorithms are typically used to provide a
digital fingerprint of a file contents, often used to ensure that the file has not been altered
by an intruder or virus. Hash functions are also commonly employed by many operating
systems to encrypt passwords. Hash functions, then, provide a measure of the integrity of
a file.

Figure 2–7 shows types of cryptography and some used algorithms in each type.

Figure 2–7: Types of cryptography and its examples

2.3. History of AES Algorithm

On January 2, 1997, the National Institute of Standards and Technology (NIST) invited
proposals for new algorithms for the Advanced Encryption Standard (AES) to replace the
old Data Encryption Standard (DES). Among the 15 preliminary candidates, MARS,

 10

RC6, Rijndael [7], Serpent, and Twofish were announced as the finalist candidates on
August 9, 1999 for further evaluation. After studying all available information and public
comments on these finalist candidates, NIST announced in October 2000 that Rijndael was
selected as the AES algorithm.

AES is a symmetric block cipher that can process data blocks of 128 bits, using
cipher keys with lengths of 128, 192, and 256 bits. Rijndael was designed to handle
additional block sizes and key lengths; however they are not adopted in this standard
[9], [10].

Throughout the remainder of this standard, the algorithm specified herein will be
referred to as “the AES algorithm.” The algorithm may be used with the three different
key lengths indicated above, and therefore these different “flavors” may be referred to as
“AES-128”, “AES-192”, and “AES-256”.

2.4. Mathematical Background for the AES

The Rijndael Algorithm is based on mathematical concept of finite fields. Knowledge
of finite fields and related terms will help in understanding structure of Rijndael and the
motivation behind some of the optimizations. This section explains the mathematical
concepts it presents the mathematical preliminaries in field theory and linear algebra [1]

1. Groups An Abelian group <G, + > is defined as a set G and an operation +
defined on the elements of G given by the following relationship:

 : : (,)G G G a b a b+ × → → +

In addition, the operation + must satisfy the following conditions:

1. Closed : , ,a b inG a b is also inG∀ +
2. Associative : , , , () ()a b c inG a b c a b c∀ + + = + +
3. Commutative : , ,a b inG a b b a∀ + = +
4. Neutral element : 0 ,0a a where a are inG+ =
5. Inverse elements : , 0a inG b inG such that a b∀ ∃ + =

2. Ring A ring <R, +,• > is defined as a set R and two operations + and •
defined on the elements of R and which fulfill the following conditions:

1. <R,+, • > is an Abelian group
2. Closed : , ,a b inG a b is also inG∀ +
3. Associative : , , , () ()a b c inG a b c a b c∀ + + = + +
4. Distributive : , , , () () ()a b c inG a b c a c b c∀ + • = • + •
5. Neutral element : 1 ,1a a where a belong to R• =

If the operation i is commutative, <R, +, • > is called a commutative ring.

 11

3. Field A field <F, +, • > is defined as the structure that fulfills the following
conditions:

1. <F, +, • > is a commutative ring.
2. <F, +> and <F0, • > are Abelian groups
3. distributive : , , , () () ()a b c in F a b c a c b c∀ + • = • + •
4. Neutral element : 0 ,0a a where a are in F+ =
5. Neutral element : , 0a in F a b∀ • =

The number of elements in the field is called its order.

4. Finite Fields A field that has a finite order is called a finite field. A field of
order m exists on iff m is a prime power, i.e. nm p= where p is a prime and n
is an integer. Here, p is called the characteristic of the finite field.

5. Galois Field A finite field with np elements is called a Galois Field ()nGF p .
Galois Fields are named after the French mathematician Evariste Galois who
did some early work on fields. Rijndael uses the Galois Field 8(2)GF .

6. Polynomials over a field A polynomial over a field is expressed as

1 1() 1 1 1 0
n nb x b x b x b x bn n

− −= + + + +− − " (2.1)

Here, x is called the indeterminate of the polynomial and
1 2 1 0, , , ,n nb b b b− − " are called coefficients. The degree of the polynomial is

the highest value of bi which is non-zero.

All bytes in the AES algorithm are interpreted as finite field elements using the
notation introduced in the above equation. Finite field elements can be added and
multiplied, but these operations are different from those used for numbers. The following
subsections introduce the basic mathematical concepts used in AES algorithm.

2.4.1. Polynomial Addition

The addition of two elements in a finite field is achieved by “adding” the
coefficients for the corresponding powers in the polynomials for the two elements. The
addition is performed with the XOR operation (denoted by ⊕) - i.e., modulo 2 - so that
1 ⊕ 1 = 0, 1 ⊕ 0 = 1, and 0 ⊕ 0 = 0. Consequently, subtraction of polynomials is
identical to addition of polynomials.

Alternatively, addition of finite field elements can be described as the modulo 2
addition of corresponding bits in the byte. For two bytes {a7a6a5a4a3a2a1a0} and
{b7b6b5b4b3b2b1b0}, the sum is {c7c6c5c4c3c2c1c0}, where each ci = ai ⊕ bi (i.e., c7 = a7
⊕ b7, c6 = a6 ⊕ b6 ..., c0 = a0 ⊕ b0).

 12

2.4.2. Polynomial Multiplication

In the polynomial representation, multiplication in GF(28) (denoted by •)
corresponds with the multiplication of polynomials modulo an irreducible polynomial of
degree 8. A polynomial is irreducible if its only divisors are one and itself. For the AES
algorithm, this irreducible polynomial is

1)(348 ++++= xxxxxm (2.2)

Or {01}{1b} in hexadecimal notation.

The modular reduction by m(x) ensures that the result will be a binary polynomial of
degree less than 8, and thus can be represented by a byte. Unlike addition, there is no
simple operation at the byte level that corresponds to this multiplication.

The multiplication defined above is associative, and the element {01} is the
multiplicative identity. For any non-zero binary polynomial b(x) of degree less than
8, the multiplicative inverse of b(x), denoted b-1(x), can be found as follows: the
extended Euclidean algorithm [5] is used to compute polynomials a(x) and c(x) such that

 1)()()()(=+ xcxmxaxb (2.3)

Hence, a(x) • b(x) mod m(x) = 1, which means

)(mod)()(1 xmxaxb =− (2.4)

Moreover, for any a(x), b(x) and c(x) in the field, it holds that

)()()()())()(()(xcxaxbxaxcxbxa •+•=+• .

It follows that the set of 256 possible byte values, with XOR used as
addition and the multiplication defined as above, has the structure of the finite field
GF(28).

2.4.3. Multiplication by x

Multiplying the binary polynomial defined in equation (2.1) with the polynomial x
results in

8 7 6 5 4 3 2
7 6 5 4 3 2 1 0b x b x b x b x b x b x b x b x+ + + + + + + (2.5)

The result x • b(x) is obtained by reducing the above result modulo m(x), as defined in
equation (2.1).If b7 = 0, the result is already in reduced form. If b7 = 1, the reduction is
accomplished by subtracting (i.e., XORing) the polynomial m(x). It follows that
multiplication by x (i.e., {00000010} or {02}) can be implemented at the byte level
as a left shift and a subsequent conditional bitwise XOR with {1b}.

 13

This operation on bytes is denoted by xtime (). Multiplication by higher
powers of x can be implemented by repeated application of xtime ().

By adding intermediate results, multiplication by any constant can be implemented.

2.4.4. Polynomials with Coefficients in GF(28)

Four-term polynomials can be defined - with coefficients that are finite field elements -
as:

 3 2
3 2 1 0()a x a x a x a x a= + + + (2.6)

This will be denoted as a word in the form [a0 , a1 , a2 , a3]. Note that the polynomials
in this section behave somewhat differently than the polynomials used in the definition of
finite field elements, even though both types of polynomials use the same indeterminate,
x. The coefficients in this section are themselves finite field elements, i.e., bytes,
instead of bits; also, the multiplication of four-term polynomials uses a different
reduction polynomial, defined below. The distinction should always be clear from the
context.

To illustrate the addition and multiplication operations, let

 01
2

2
3

3)(bxbxbxbxb +++= (2.7)

Define a second four-term polynomial. Addition is performed by adding the
finite field coefficients of like powers of x. This addition corresponds to an XOR
operation between the corresponding bytes in each of the words – in other words,
the XOR of the complete word values.

Thus, using the equations of (2.6) and (2.7),

)()()()()()(0011
2

22
3

33 baxbaxbaxbaxbxa ⊕+⊕+⊕+⊕=+ (2.8)

Multiplication is achieved in two steps. In the first step, the polynomial product c(x)
= a(x) • b(x) is algebraically expanded, and like powers are collected to give

 01
2

2
3

3
4

4
5

5
6

6)(cxcxcxcxcxcxcxc ++++++= (2.9)

Where

0 0 0 4 3 1 2 2 1 3

1 1 0 0 1 5 3 2 2 3

2 2 0 1 1 0 2 6 3 3

3 3 0 2 1 1 2 0 3

c a b c a b a b a b
c a b a b c a b a b
c a b a b a b c a b
c a b a b a b a b

= • = • ⊕ • ⊕ •
= • ⊕ • = • ⊕ •
= • ⊕ • ⊕ • = •
= • ⊕ • ⊕ • ⊕ •

 (2.10)

 14

The result, c(x), does not represent a four-byte word. Therefore, the second
step of the multiplication is to reduce c(x) modulo a polynomial of degree 4; the result
can be reduced to a polynomial of degree less than 4. For the AES algorithm, this is
accomplished with the polynomial x4 + 1, so that

 4mod4)1mod(ii xxx =+ (2.11)

The modular product of a(x) and b(x), denoted by a(x) ⊗ b(x), is given by the
four-term polynomial d(x), defined as follows:

 01
2

2
3

3)(dxdxdxdxd +++= (2.12)

 With

0 0 0 3 1 2 2 1 3

1 1 0 0 1 3 2 2 3

2 2 0 1 1 0 2 3 3

3 3 0 2 1 1 2 0 3

() () () ()
() () () ()
() () () ()
() () () ()

d a b a b a b a b
d a b a b a b a b
d a b a b a b a b
d a b a b a b a b

= • ⊕ • ⊕ • ⊕ •
= • ⊕ • ⊕ • ⊕ •
= • ⊕ • ⊕ • ⊕ •
= • ⊕ • ⊕ • ⊕ •

 (2.13)

When a(x) is a fixed polynomial, the operation defined in equation (2.12) can be
written in matrix form as:

0 0 1 03 2

21 1 10 3

1 0 32 2 2

2 13 3 0 3

d a a ba a
ad a ba a

a a ad a b
a ad a a b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.14)

Because x 4+ 1 is not an irreducible polynomial over GF(28), multiplication by a fixed
four-term polynomial is not necessarily invertible. However, the AES algorithm specifies
a fixed four-term polynomial that does have an inverse (which is required for the
decryption process):

3 2() {03} +{01} + {01} {02}a x x x x= + (2.15)

 -1 3 2() {0 } {0 } +{09} {0 }a x b x d x x e= + + (2.16)

2.5. The AES Cipher/ Decipher Algorithm

The Rijndael proposal for AES defined a cipher in which the block length and the key
length can be independently specified to be 128, 192, or 256 bits. The AES specification
uses the same three key size alternatives but limits the block length to 128 bits. A number
of AES parameters depend on the key length (Table 2–1). In the description of this
section, we assume a key length of 128 bits, which is likely to be the one most commonly
implemented [7], [10].

 15

Table 2–1: AES Parameters
Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256

Plaintext block size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Number of rounds 10 12 14

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Expanded key size (words/bytes) 44/176 52/208 60/240

Rijndael was designed to have the following characteristics:

• Resistance against all known attacks
• Speed and code compactness on a wide range of platforms
• Design simplicity

Figure 2–8 shows the overall structure of AES. The input to the encryption and
decryption algorithms is a single 128-bit block. In FIPS PUB 197, this block is depicted
as a square matrix of bytes. This block is copied into the State array, which is modified at
each stage of encryption or decryption. After the final stage, State is copied to an output
matrix. These operations are depicted in Figure 2–8-a. Similarly, the 128-bit key is
depicted as a square matrix of bytes. This key is then expanded into an array of key
schedule words; each word is four bytes and the total key schedule is 44 words for the
128-bit key (Figure 2–8-b). Note that the ordering of bytes within a matrix is by column.
So, for example, the first four bytes of a 128-bit plaintext input to the encryption cipher
occupy the first column of the in matrix, the second four bytes occupy the second column,
and so on. Similarly, the first four bytes of the expanded key, which form a word, occupy
the first column of the w matrix.

 16

Figure 2–8: AES Encryption and Decryption

Before delving into details, we can make several comments about the overall AES
structure:

1. One noteworthy feature of this structure is that it is not a Feistel structure. In the
classic Feistel structure, half of the data block is used to modify the other half of
the data block, and then the halves are swapped. Two of the AES finalists,
including Rijndael, do not use a Feistel structure but process the entire data block in
parallel during each round using substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-four 32-bit
words, w[i]. Four distinct words (128 bits) serve as a round key for each round;
these are indicated in Figure 2–8.

3. Four different stages are used, one of permutation and three of substitution:

 17

• SubBytes(): Uses an S-box to perform a byte-by-byte substitution of the
block

• ShiftRows(): A simple permutation
• MixColumns(): A substitution that makes use of arithmetic over GF(28)
• AddRoundKey(): A simple bitwise XOR of the current block with a

portion of the expanded key

4. The structure is quite simple. For both encryption and decryption, the cipher begins
with an AddRoundKey stage, followed by nine rounds that each includes all four
stages, followed by a tenth round of three stages. Figure 2–9 depicts the structure of
a full encryption round.

Figure 2–9: AES Encryption Round

5. Only the AddRoundKey stage makes use of the key. For this reason, the cipher
begins and ends with an AddRoundKey stage. Any other stage, applied at the
beginning or end, is reversible without knowledge of the key and so would add no
security.

6. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would
not be formidable. The other three stages together provide confusion, diffusion, and
nonlinearity, but by themselves would provide no security because they do not use
the key. We can view the cipher as alternating operations of XOR encryption
(AddRoundKey) of a block, followed by scrambling of the block (the other three
stages), and followed by XOR encryption, and so on. This scheme is both efficient
and highly secure.

7. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and
MixColumns stages, an inverse function is used in the decryption algorithm. For
the AddRoundKey stage, the inverse is achieved by XORing the same round key to
the block, using the result that A ⊕ A ⊕ B = B.

 18

8. As with most block ciphers, the decryption algorithm makes use of the expanded
key in reverse order. However, the decryption algorithm is not identical to the
encryption algorithm. This is a consequence of the particular structure of AES.

9. Once it is established that all four stages are reversible, it is easy to verify that
decryption does recover the plaintext. Figure 2–9 lays out encryption and
decryption going in opposite vertical directions. At each horizontal point (e.g., the
dashed line in the figure), State is the same for both encryption and decryption.

10. The final round of both encryption and decryption consists of only three stages.
Again, this is a consequence of the particular structure of AES and is required to
make the cipher reversible.

We now turn to a discussion of each of the four stages used in AES. For each stage, we
describe the forward (encryption) algorithm, the inverse (decryption) algorithm, and the
rationale for the stage. This is followed by a discussion of key expansion. As was
mentioned in Sec. 2.4, AES uses arithmetic in the finite field GF(28), with the irreducible
polynomial m(x) = x8 + x4 + x3 + x + 1.

2.5.1. SubBytes Transformation (Forward and Inverse Transformations)

The forward substitute byte transformation, called SubBytes(), is a simple table lookup
(Figure 2–10-a). AES defines a 16 x 16 matrix of byte values, called an S-box (Table 2–2-
a), that contains a permutation of all possible 256 8-bit values. Each individual byte of
State is mapped into a new byte in the following way: The leftmost 4 bits of the byte are
used as a row value and the rightmost 4 bits are used as a column value. These row and
column values serve as indexes into the S-box to select a unique 8-bit output value.

Figure 2–10: AES Byte level operations

 19

Table 2–2: AES S-Boxes

The S-box is constructed in the following fashion:

1. Initialize the S-box with the byte values in ascending sequence row by row. The
first row contains {00}, {01}, {02} …, {0F}; the second row contains {10}, {11},
etc.; and so on. Thus, the value of the byte at row x, column y is {xy}.

2. Map each byte in the S-box to its multiplicative inverse in the finite field GF(28);
the value {00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled (b7, b6, b5, b4, b3, b2,
b1, b0). Apply the following transformation to each bit of each byte in the S-box:

(4)mod8 (5)mod8 (6)mod8 (7)mod8'i i i i i i ib b b b b b c+ + + += + + + + + (2.17)

Where ci is the ith bit of byte c with the value {63}; that is, (c7c6c5c4c3c2c1c0) =
(01100011). The prime (') indicates that the variable is to be updated by the value on the
right. The AES standard depicts this transformation in matrix form as follows:

 20

'
00

'
11

'
22

'
33

'
44

'
55

'
66

'
77

1 0 0 0 1 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 0 1
0 0 0 1 1 1 1 1 0

bb
bb
bb
bb
bb
bb
bb
bb

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ = +⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 (2.18)

Equation (2.18) has to be interpreted carefully. In ordinary matrix multiplication, each
element in the product matrix is the sum of products of the elements or one row and one
column. In this case, each element in the product matrix is the bitwise XOR of products of
elements of one row and one column. Further, the final addition shown in Equation (2.18)
is a bitwise XOR.

The inverse substitute byte transformation, called InvSubBytes(), makes use of the
inverse S-box shown in Table 2–2-b. Note, for example, that the input {2A} produces the
output {95} and the input {95} to the S-box produces {2A}. The inverse S-box is
constructed by applying the inverse of the transformation in equation (2.17) followed by
taking the multiplicative inverse in GF(28). The inverse transformation is:

(2)mod8 (5)mod8 (7)mod8'i i i i i ib b b b b d+ + += + + + + (2.19)

Where byte d = {05}, or 00000101. We can depict this transformation as follows:

'
00

'
11

'
22

'
33

'
44

'
55

'
66

'
77

0 0 1 0 0 1 0 1 1
1 0 0 1 0 0 1 0 1
0 1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0 0
0 1 0 1 0 0 1 0 0
0 0 1 0 1 0 0 1 1
1 0 0 1 0 1 0 0 1
0 1 0 0 1 0 1 0 0

bb
bb
bb
bb
bb
bb
bb
bb

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ = +⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 (2.20)

2.5.2. ShiftRows Transformation (Forward and Inverse Transformations)

The forward shift row transformation, called ShiftRows(), is depicted in Figure 2–11-a.
The first row of State is not altered. For the second row, a 1-byte circular left shift is
performed. For the third row, a 2-byte circular left shift is performed. For the fourth row,
a 3-byte circular left shift is performed.

 21

Figure 2–11: AES Row and Column Properties

The inverse shift row transformation, called InvShiftRows(), performs the circular
shifts in the opposite direction for each of the last three rows, with a one-byte circular
right shift for the second row, and so on.

2.5.3. MixColumns Transformation (Forward and Inverse Transformations)

The forward mix column transformation, called MixColumns() transformation
operates on the State column-by-column, treating each column as a four-term
polynomial as described in Sec. 2.4.4. The columns are considered as polynomials over
GF(28) and multiplied modulo x4 + 1 with a fixed polynomial a(x), given by equation
(2.15)

3 2() {03} +{01} + {01} {02}a x x x x= +

As described in Sec. 2.4.4, this can be written as a matrix multiplication. Let:

 ' () () ()s x a x s x= ⊗

'
0, 0,

'
1, 1,

'
2, 2,

'
3, 3,

02 03 01 01
01 02 03 01

0
01 01 02 03
03 02 02 01

c c

c c

c c

c c

s s

s s
for c Nb

s s

s s

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ≤ <⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.21)

 22

As a result of this multiplication, the four bytes in a column are replaced by the
following:

'
0, 0, 1, 2, 3,

'
1, 0, 1, 2, 3,

'
2, 0, 1, 2, 3,

'
3, 0, 1, 2, 3,

({02}) ({03})

({02}) ({03})

({02}) ({03})

({03}) ({02})

c c c c c

c c c c c

c c c c c

c c c c c

s s s s s

s s s s s

s s s s s

s s s s s

= • ⊕ • ⊕ ⊕

= ⊕ • ⊕ • ⊕

= ⊕ ⊕ • ⊕ •

= • ⊕ ⊕ ⊕ •

 (2.22)

The inverse mix column transformation, called InvMixColumns() is the inverse of the
MixColumns() transformation. InvMixColumns() operates on the State column-by-
column, treating each column as a four- term polynomial as described in Sec. 2.4.4.
The columns are considered as polynomials over GF(28) and multiplied modulo x4 + 1 with
a fixed polynomial a-1(x), given by equation (2.16)

 -1 3 2() {0 } {0 } +{09} {0 }a x b x d x x e= + +

As described in Sec. 4.3, this can be written as a matrix multiplication. Let

 ' 1() () ()s x a x s x−= ⊗

'
0, 0,

'
1, 1,

'
2, 2,

'
3, 3,

0 0 0 09
09 0 0 0

0
0 09 0 0
0 0 09 0

c c

c c

c c

c c

s se b d
s se b d

for c Nb
d e bs s
b d es s

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ≤ <⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.23)

As a result of this multiplication, the four bytes in a column are replaced by the
following:

'
0, 0, 1, 2, 3,

'
1, 0, 1, 2, 3,

'
2, 0, 1, 2, 3,

'
3, 0, 1, 2,

({0 }) ({0 }) ({0 }) ({09})

({09}) ({0 }) ({0 }) ({0 })

({0 }) ({09}) ({0 }) ({0 })

({0 }) ({0 }) ({09})

c c c c c

c c c c c

c c c c c

c c c c

s e s b s d s s

s s e s b s d s

s d s s e s b s

s b s d s s

= • ⊕ • ⊕ • ⊕ •

= • ⊕ • ⊕ • ⊕ •

= • ⊕ • ⊕ • ⊕ •

= • ⊕ • ⊕ • 3,({0 })ce s⊕ •

 (2.24)

2.5.4. AddRoundKey Transformation (Forward and Inverse Transformations)

In the forward add round key transformation, called AddRoundKey, the 128 bits of
State are bitwise XORed with the 128 bits of the round key. As shown in Figure 2–10-b,
the operation is viewed as a column wise operation between the 4 bytes of a State column
and one word of the round key; it can also be viewed as a byte-level operation.

 23

2.6. AES Key Expansion Algorithm

The AES key expansion algorithm takes as input a 4-word (16-byte) key and produces
a linear array of 44 words (176 bytes). This is sufficient to provide a 4-word round key for
the initial AddRoundKey stage and each of the 10 rounds of the cipher. The Figure below
shows pseudo-code describes the expansion:

Figure 2–12: Key Expansion Pseudo-code

 The key is copied into the first four words of the expanded key. The remainder of the
expanded key is filled in four words at a time. Each added word w[i] depends on the
immediately preceding word, w[i 1], and the word four positions back, w[i 4]. In three out
of four cases, a simple XOR is used. For a word whose position in the w array is a
multiple of 4, a more complex function is used. Figure 2–13 illustrates the generation of
the first eight words of the expanded key, using the symbol g to represent that complex
function. The function g consists of the following sub-functions:

1. RotWord performs a one-byte circular left shift on a word. This means that an input
word [b0, b1, b2, b3] is transformed into [b1, b2, b3, b0].

2. SubWord performs a byte substitution on each byte of its input word, using the S-
box (Table 2–2-a).

3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

 24

Figure 2–13: AES Key Expansion

The round constant is a word in which the three rightmost bytes are always 0. Thus the
effect of an XOR of a word with Rcon is to only perform an XOR on the leftmost byte of
the word. The round constant is different for each round and is defined as Rcon[j] =
(RC[j], 0, 0, 0), with RC[1] = 1, RC[j] = 2 · RC[j - 1] and with multiplication defined
over the field GF(28). The values of RC[j] in hexadecimal are shown in Table 2–3

Table 2–3: Rcon [j] Values
j 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

2.7. Equivalent Inverse Cipher

As was mentioned, the AES decryption cipher is not identical to the encryption cipher
(Figure 2–8). That is, the sequence of transformations for decryption differs from that for
encryption, although the form of the key schedules for encryption and decryption is the
same. This has the disadvantage that two separate software or firmware modules are
needed for applications that require both encryption and decryption. There is, however, an
equivalent version of the decryption algorithm that has the same structure as the
encryption algorithm. The equivalent version has the same sequence of transformations as
the encryption algorithm (with transformations replaced by their inverses). To achieve this
equivalence, a change in key schedule is needed.

Two separate changes are needed to bring the decryption structure in line with the
encryption structure. An encryption round has the structure SubBytes, ShiftRows,
MixColumns and AddRoundKey. The standard decryption round has the structure
InvShiftRows, InvSubBytes, AddRoundKey and InvMixColumns, Thus, the first two
stages of the decryption round need to be interchanged, and the second two stages of the
decryption round need to be interchanged.

 25

2.7.1. Interchanging InvShiftRows and InvSubBytes

InvShiftRows affects the sequence of bytes in State but does not alter byte contents and
does not depend on byte contents to perform its transformation. InvSubBytes affects the
contents of bytes in State but does not alter byte sequence and does not depend on byte
sequence to perform its transformation. Thus, these two operations commute and can be
interchanged. For a given State Si,

InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)]

2.7.2. Interchanging AddRoundKey and InvMixColumns

The transformations AddRoundKey and InvMixColumns do not alter the sequence of
bytes in State. If we view the key as a sequence of words, then both AddRoundKey and
InvMixColumns operate on State one column at a time. These two operations are linear
with respect to the column input. That is, for a given State Si and a given round key wj:

InvMixColumns (Si ⊕ wj) = [InvMixColumns (Si)] ⊕ [InvMixColumns (wj)]

Figure 2–14 illustrates the equivalent decryption algorithm.

Figure 2–14: Equivalent Inverse Cipher

 26

C h a p t e r 3

HEURISTIC DESIGN OF RIJNDAEL S-BOX

Cipher systems are a prime target for an attacker wishing to compromise the
information being protected by a security system. In line with the three forms of
protection mentioned above, the typical motives of an attacker include seeking to reveal
confidential information, to illicitly and surreptitiously modify information, and to falsely
claim an identity. In addition, an attacker may seek to remove evidence, or even insert
false evidence, that a particular event or transaction has occurred. Compromising a cipher
system which endeavors to protect this information can either directly enable these actions
to occur, or indirectly weaken another part of the system to enable these actions to later
occur. Powerful existing cryptanalytic attacks against cipher systems have proved to be
successful under the right conditions [11].

The overall strength of a security system is dependent on the strength of the individual
components, such as the authentication system, the key management system, the data
storage system, the cipher system and the policies and procedures, to name a few.
Similarly, the overall strength of a cipher system is dependent on the strength of its
individual components. A weakness in any of the individual components may lead to a
catastrophic failure in the whole cipher.

Boolean functions and substitution boxes (s-boxes) are two of the most common and
critical components of cryptographic cipher systems. These components are directly
related by function quantity. That is, a substitution box is typically comprised of multiple
single output Boolean functions, but if it maps to only one bit, is identical to a Boolean
function.

Boolean functions are often utilized in the keystream generation process of stream ciphers
as they are highly suitable for receiving bits of linear feedback shift registers as input in
order to combine them as securely as possible to produce the single keystream. Further,
Boolean functions are capable of exhibiting the combination of cryptographic properties
necessary to resist the typical types of attacks which seek to reveal part or all of the
keystream.

The most common type of cipher system which employs s-boxes are block ciphers. As
a block cipher system encrypts its data in fixed length blocks, s-boxes are a natural
component of such a system. They provide a means of substituting multiple bits (part of
or a whole block) of data for a completely different set of output bits. More importantly is
the use of strong s-boxes (those which possess good cryptographic properties) so the
substitution signifies a complex relationship between input and output bits of the s-box.
The typical use of s-boxes in the cipher's iterative round function serves to increase the
effort needed to exploit any statistical structure in the data.

Boolean functions and s-boxes will only be able to contribute to the security of a cipher
by possessing good measures of desirable cryptographic properties. Obtaining strong

 27

Boolean functions and s-boxes for incorporation into cryptographic cipher systems to
enhance their security is an ongoing research problem. This is particularly so as
cryptanalytic techniques become more sophisticated, and with the advancement of
computing technology which works both for and against cryptographic security. The size
of Boolean functions and the dimension of s-boxes have a significant bearing on security,
though larger functions generally require more computational effort in order to exploit
weaknesses, so too is the computational effort increased when attempting to obtain large
functions with exceptionally good measures of desirable cryptographic properties. This
adds an extra element of difficulty to the research problem.

In this chapter we propose a new AES S-box with good cryptographic properties such
as high nonlinearity and low autocorrelation.

3.1. Boolean Function and S-box Theory

 This section provides some definitions of relevance to Boolean functions with
cryptographic application. We denote the substitution table of an n-input k-output
Boolean function by : n kf B B→ , mapping each combination of n Boolean input values
to some combination of k Boolean output values [12].

For single-output functions if the number of combinations mapping to 0 is the same as
the number mapping to 1 then the function is said to be balanced. For the multiple-output
case, if each k-bit output value appears the same number of times, we say that the function
is regular.

For the single-output case the substitution table is generally referred to as a ‘truth
table’. The polarity truth table is a particularly useful representation for our purposes. It is
defined by ()ˆ() (1) f xf x = − . Two functions f and g are said to be uncorrelated
when ˆ ˆ() () 0

nx B
f x g x

∈

=∑ . If so, if you try to approximate f by using g, you will be right

half the time and wrong half the time.

An area of particular importance for cryptanalysts is the ability to approximate a
function f by a simple linear function. One of the cryptosystem designer’s tasks is to make
such approximation as difficult as possible (by making the function f suitably nonlinear).
Linearity is a form of structure crypto designers clearly strive to avoid. One form of attack
that exploits linearity is known as linear cryptanalysis, introduced by Matsui [13]. It has
attracted a great deal of attention. Another form of structure that is to be avoided is
differential structure. Essentially, particular differences in input words (difference defined
by simple bitwise XOR) may be associated with particular differences of output words
(again defined by bitwise XOR) with some strong bias (i.e. the output difference is not
uniform for a particular input difference). This can often be exploited by a form of attack
known as differential cryptanalysis, introduced by Biham and Shamir [14], [15].

Substitution boxes are essentially n-input k-output functions. These can be viewed as a
combination of k individual single-output Boolean functions. Several important security
criteria are actually defined in terms of single-output function criteria and so it is essential

 28

to understand first the basic Boolean function definitions and concepts. We then extend
these to cater for the multiple-output case.

3.2. Cryptographic Criteria for Single-output Functions and S-boxes

Two formal criteria have been defined for the single-output case to capture some
aspects of resilience to the sorts of attacks indicated above [11, 12]. These are high
nonlinearity and low autocorrelation and are defined below together with other
terminology used in this chapter.

Linear Boolean Function: A linear Boolean function f, selected by nBω ∈ , is denoted
by 1 1 1 1() n nL x x x xω ω ω ω= ⊕ ⊕… , Where i ixω denotes the bitwise AND of the ith bits of
ω and x, and ⊕ denotes bitwise XOR.

Affine Boolean Function: The set of affine functions is the set of linear functions and
their complements , () () ,cA x L x c c Bω ω= ⊕ ∈

Walsh Hadamard Transform: For a Boolean function f the Walsh Hadamard
Transform f̂F is defined by ˆ ˆˆ () () ()

n
f

x B

F f x l xωω
∈

= ∑ . We denote the maximum absolute

value taken by the transform by max
ˆ() max ()

n f
B

WH f F
ω

ω
∈

= . It is related to the nonlinearity

of f.

Nonlinearity: The nonlinearity Nf of a Boolean function f is its minimum distance to

any affine function. It is given by max
1 (2 ())
2

n
fN WH f= − .

Parseval’s Theorem: This states that 2ˆ(()) 2
n

n

B

F w
ω∈

=∑ . A consequence of this result is

that / 2
max () 2nWH f ≥ .

Autocorrelation Transform: The autocorrelation transform of a Boolean function f is
given by ˆ ˆˆ () () ()f

x
r s f x f x s= ⊕∑ . We denote the maximum absolute value in the

autocorrelation spectra of a function f by ACf , i.e., ˆ ˆmax () ()f s
x

AC f x f x s= ⊕∑ . Here x

and s range over Bn.

Extensions to S-boxes: For each k-output S-box, we can extract a single-output
Boolean function by simply XORing some subset of the output bits together. If

() : n kf x B B→ is an n-input k-output S-box then each kBβ ∈ defines a function that is a
linear combination ()f xβ of the m outputs of f. This is given by
 1 1 2 2() () () ()k kf x f x f x f xβ β β β= ⊕ ⊕…

 29

For each such function f β the Walsh-Hadamard values ˆ ()Fβ ω and autocorrelation
values ()r sβ are defined in the usual way. (Each such function is now a single-output
function defined over the n inputs.) There are 2k−1 non-trivial functions obtainable in this
way. The notions of non-linearity and autocorrelation are readily extended to the multiple
output case. For the k-output case the non-linearity is the worst (lowest) non-linearity of
all the 2k−1 non-trivial single output functions obtained as indicated above. Similarly, the
autocorrelation is the worst (highest) over all such derived single-output functions.

3.3. Cost Functions
3.3.1. Traditional Cost Functions

In virtually all work done so far existing optimization based work aimed at producing
highly nonlinear functions has generally used nonlinearity itself as the fitness function,
i.e. the fitness of a function f on n input variables is given by

max
1() (2 ())
2

N
ffitness f N WH f= = − (3.1)

Or, when viewed as a minimization problem, the cost function is given by

max
ˆcos () () max ()t f WH f Fω ω= = (3.2)

Similarly, with low autocorrelation as the target, the autocorrelation itself has been
used as the cost function, i.e. the cost function is given by

0 0
ˆ ˆ ˆcos () max () () max ()

s sx
t f f x f x s r s

≠ ≠
= + =∑ (3.3)

Previous optimization approaches to evolving Boolean functions with desirable
cryptographic properties have been generalized to the multiple-output case. Millan has
compared random generation and hill-climbing as means of evolving highly nonlinear
bijective S-boxes [16]. Burnett et al. have investigated the use of genetic algorithms and
hill-climbing to evolve regular S-boxes [17]. Both high nonlinearity and low
autocorrelation were targets. The fitness and cost measures for an S-box were the
nonlinearity and autocorrelation values of that S-box. For the S-box case, the researchers
above have used extensions of the basic definitions as cost functions. For non-linearity the
cost function was:

,
ˆcos () max ()

k nB B
t f Fβ

β ω
ω

∈ ∈
= (3.4)

 30

For autocorrelation the cost function was:

\{0 }, \{0 }
ˆcos () max ()

k k n nB s B
t f r sβ

β∈ ∈
= (3.5)

3.3.2. Spectrum Based Cost Functions

Traditional optimization work in non-linearity attempts to improve the non-linearity
directly. Equivalently (see the definition of Nf in Section 3.3.1), it seeks to minimize the
cost function

 maxcos () ()t f WH f=

Essentially, the search considers the effect of a move only on those extreme (or near
extreme) values of the Walsh Hadamard Transforms ˆ ()F ω for the current solution. A
more indirect approach can be derived by considering Parseval’s theorem below.

 2 2ˆ(()) 2
n

n

B

F
ω

ω
∈

=∑

This constrains max
ˆ() max | () |

nB
WH f F

ω
ω

∈
= to be at least 22

n

. It would achieve this bound

when for each 2ˆ, () 2
n

Fω ω = . In practice this bound may be impossible. When
some ˆ| () |F ω are greater than this ideal bound, Parseval’s theorem ensures that
some ˆ| () |F ω must be smaller than it. Thus, it would appear that attempting to restrict the
spread of absolute values achieved is well-motivated. This suggests a cost function of the
following form:

2ˆ ˆcos () () 2
n

Rn

B

t f F
ω

ω
∈

= −∑ (3.6)

The value R is positive and can be varied. Note that it does not necessarily follow that
a reduction in our cost function gives rise to an increase in non-linearity but if the range of
absolute values is small, then the maximum value will be small too.

The above cost function could be written as:

ˆ ˆcos () ()
n

R

B

t f F X
ω

ω
∈

= −∑ (3.7)

Where X and R are real-valued parameters. It is difficult to predict what the best such
parameter values should be and considerable experimentation is needed. However, as
indicated above, they have produced some exceptional results (effectively equaling the

 31

best results of theoreticians for functions of 8-inputs or less). A similar cost function
obtained by substituting ˆ ()fr s for ˆ ()fF ω was later used to similar effect [18], [19].

Since spectrum-based approaches generated interesting results for the single-output
case an obvious question to pose is ‘Can the spectrum-based approaches be generalized to
allow S-boxes to be evolved with desirable properties?’ Two cost functions can now be
defined for use in S-box evolution. A cost function based on Walsh-Hadamard spectra is
given by

ˆ ˆcos () ()
k n

R

B B

t f F Xβ
β ω

ω
∈ ∈

= −∑ ∑ (3.8)

And a similar cost function based on autocorrelation spectra is given by

ˆ ˆcos () ()
k n

R

B s B

t f r s X
β

β∈ ∈

= −∑ ∑ (3.9)

The single output cost functions have been applied to each function defined as a linear
combination of the outputs and the results summed over all such combinations.

3.4. Optimization Algorithms of a Single Boolean Function

The two main techniques which have been used for this purpose by researchers in the
field are [11]:

1. Heuristic techniques; and
2. Algebraic constructions.

Heuristic techniques are driven by a directed search algorithm typically searching in a
localized area from a specified starting point. Their use is more frequent for searching in
large spaces in order to find a large number of solutions which are satisfactory, but
generally not optimal. For this reason, heuristic techniques are often applied to difficult
combinatorial problems. Well known heuristic techniques include Simulated Annealing
[43], Tabu Search [31], Genetic Algorithms [37] and Hill Climbing techniques [70].

Algebraic constructions rely on proven mathematical relationships holding for a
generalized construction of functions. Whilst algebraic constructions have been shown to
generally produce functions with the most optimum combinations of properties, they are
not typically designed to produce a great number of such functions. Further, the existence
of inherent weaknesses in functions produced by algebraic construction is a valid concern.
In contrast, the vast amount of experimentation so far performed using heuristic
techniques has shown that, for large input spaces, these techniques are generally unable to
generate optimal functions. This is due to the nature of the technique as simply being a
way to non-deterministically search through a search space in a directed fashion. Thus, as
the number of input variables increases by one, the number of functions in the space
increases by a factor of 22N

 and the probability of discovering optimal functions decreases.

 32

However, because heuristic techniques involve directed search methods, they have been
shown to produce consistent results in finding functions with good properties, and unlike
algebraic constructions, are able to produce a large number of such functions. For this
reason, the approach taken in this section has been primarily focused on the application of
heuristic techniques.

3.4.1. Hill Climbing

The basic hill climbing technique involves searching, at each iteration, for elements of
a function to modify which will result in an improvement in the results already obtained.
At the end of the process, it is expected that the final output will represent the best
solution obtainable.

For cryptographic applications used in this research, hill climbing is referred to as
being the process whereby one or more distinct elements in the truth table of a function
are complemented in order to make iterative improvements to the cryptographic properties
or fitness of the function. The fitness of a function is the measure of a particular
cryptographic property or properties exhibited by the function. In [20], the authors
categorize the fitness function into either weak or strong acceptance. A weak acceptance
condition will accept an incremental change in the truth table even if such a change
produces no increase in the fitness of the new function, provided that there is no decrease
in the fitness. A strong acceptance condition, on the other hand, will only accept an
incremental change in the truth table when such a change produces an increase in the
fitness of the new function. Thus, the only time an increase in the fitness is forced is when
a strong acceptance condition is imposed. In addition to relying on this measure as a
criterion for deciding whether to accept or reject functions to be input into the next
iteration of the process, hill climbing requires the formation of improvement sets.
Improvement sets are defined according to the fitness function which is utilized in the hill
climbing process.

The hill climbing approach to Boolean function design was introduced in [21] as a
mean of improving the nonlinearity of a given Boolean function by making well chosen
alterations of one or two places of the truth table. It is easy to show that any single truth
table change causes () { 2,2}WHT ωΔ ∈ − for all ω. Any two changes cause

() { 4,0,4}WHT ωΔ ∈ − . When the two function values satisfy 1 2() ()f x f x≠ then the
Hamming weight will not change. By starting with a balanced function, we can hill climb
to a more nonlinear balanced function.

Paper [21] has introduced the requirements for improvement of the WHT for one and
two changes to the truth table. Here we briefly give a more general derivation of the rules
for the two change case (to keep function balancing).

Consider a given Boolean function f(x) in polarity truth table form ˆ()f x . Now let the
truth table output be complemented for two distinct inputs x1 and x2. We have

ˆˆ () () {1, 2}i ig x f x for i= − ∈ , and ˆˆ () ()g x f x= for other x. Now consider the WHT of
g(x).

 33

1 2

1 2

1 1 2 2
{ , }

1 1 2 2
{ , }

ˆ ˆˆ() () ()

ˆ ˆ ˆˆ ˆ ˆ() () () () () ()

ˆ ˆ ˆˆ ˆ ˆ(() () () ()) () ()

x

x x x

x x x

G g x L x

g x L x g x L x g x L x

f x L x f x L x f x L x

ω

ω ω ω

ω ω ω

ω

∉

∉

=

= + +

= − + +

∑

∑

∑

We will naturally define the change in the WHT value for all ω as

ˆ ˆ() () ()WHT G Fω ω ωΔ = − .

It follows directly that

 1 1 2 2
ˆ ˆˆ() 2 () () 2 () ().WHT f x L x f x L xω ωωΔ = − −

This result can be used directly to quickly update the WHT each iteration of a 2-step
hill climbing program. It is now a straightforward matter to determine the conditions
required for the choice of (x1, x2) to complement so that the WHT values change as
required. It is clear that two changes ensure () { 4,0,4}WHT ωΔ ∈ − . As in all hill climbing
methods we assume 1 2() ()f x f x≠ has been fixed, so that Hamming weight doesn’t
change. We have

() 4 () () {1,2},
() 4 () () {1,2}
() 0 () ()

() () {1,2}.

WHT i i

WHT i i

WHT i i

i i

both f x L x for i
both f x L x for i and
one f x L x and another

f x L x for i

ω

ω

ω

ω

ω
ω
ω

Δ = − ⇔ = ∈
Δ = + ⇔ ≠ ∈
Δ = ⇔ =

≠ ∈

This specifies the tests for all conditions of interest in 2-step hill climbing. When we
require definite improvement of the WHT and wish to maintain Hamming weight, then
we may complement the truth table output for any pair (x1, x2) that satisfies all the
following conditions:

1 2

max

max

max

() () ()
ˆ() () () {1,2}, { : () }
ˆ() () () {1,2}, { : () }

ˆ() () () {1,2}, { : () (4)}

() () (

i i

i i

i i

i i

i f x f x

ii both f x L x for i for all F WH

iii both f x L x for i for all F WH

iv not both f x L x for i for all F WH

v not both f x L x

ω

ω

ω

ω

ω ω

ω ω

ω ω

≠

= ∈ =

≠ ∈ = −

≠ ∈ = −

= max
ˆ) {1,2}, { : () (4)}for i for all F WHω ω∈ = − −

Figure 3–1 shows the Boolean function hill climbing algorithm.

 34

Figure 3–1: Boolean function Hill Climbing Algorithm

A similar hill climbing algorithm [20] could be used to improve the autocorrelation of
Boolean function.

Figure 3–2 shows the nonlinearity achieved by the hill climbing algorithm for 100
iterations. One can see that the maximum achievable nonlinearity achieved using this
algorithm is 112.

Figure 3–2: Hill Climbing Algorithm output (Nonlinearity vs Iteration number)

3.4.2. Simulated Annealing

In 1983 Kirkpatrick et al. [22] proposed a new search technique based on the cooling
processes of molten metals. The technique was simulated annealing. It has proved to be
an extraordinarily simple, yet powerful, heuristic search technique. It merges hill-
climbing with the probabilistic acceptance of non-improving moves. The basic algorithm
is shown in Figure 3–1.

0 10 20 30 40 50 60 70 80 90 100 98

100

102

104

106

108

110

112

Iteration number

Nonlinearity

1. Generate a random Boolean function f and calculate its
Walsh Hadamard transform.

2. By parsing the WHT find the values of ω which belong to
the groups max max max max, , (4), (4).WH WH WH WH− − − −

3. For i =1 to 2n-1
For j = i+1 to 2n

 If f(i) ≠f(j)
 g=f;
 g(i)=f(j);
 g(j)=f(i);

if conditions ii, iii, iv, v satisfied
 f =g;
 Goto 2;

4. Go to step 1 until no improvement occurs.

 35

Figure 3–3: Basic Simulated Annealing for Minimization Problems

The search starts at some initial state S=S0. There is a control parameter T known as
the temperature. This starts 'high' at T0 and is gradually lowered. At each temperature, a
number MIL (Moves in Inner Loop) of moves to new states are attempted. A candidate
state Y is randomly selected from the neighborhood N(S) of the current state. The change
in value, δ, of f is calculated. If it improves the value of f(s) (i.e. if the δ<0 for a
minimization problem) then a move to that state is taken (S=Y); if not, then it is taken
with some probability. The worse a move is, the less likely it is to be accepted. The lower
the temperature T the less likely is a worsening moves to be accepted. Probabilistic
acceptance is determined by generating a random value in the range (0...1) and
performing the indicated comparison. Initially the temperature is high and virtually any
move is accepted. As the temperature is lowered it becomes ever more difficult to accept
worsening moves. Eventually, only improving moves are allowed and the process
becomes ‘frozen’. The algorithm terminates when the stopping criterion is met. Common
stopping criteria, and the ones used for the work in this thesis, are to stop the search after
a fixed number MaxIL of inner loops have been executed, or else when some maximum
number MUL of consecutive unproductive inner loops have been executed (an inner loop
is termed unproductive if no move is accepted within it). Generally the best state achieved
so far will also be recorded (since the search may actually move out of it and subsequently
be unable to find a state of similar quality). At the end of each inner loop the temperature
is lowered. The simplest way of lowering the temperature is shown. This is known as
geometric cooling. The basic simulated annealing algorithm has proven remarkably
effective over a range of problems. This technique will be used (with hill-climbing) to
improve the AES S-box.

Figure 3–4 shows the Boolean function optimization results for (MaxIL=100) and
(MUL=100) and (T=10) and (α=0.9). It is clear that the maximum achievable
Nonlinearity using this method is 114.

 36

Figure 3–4: Simulatd Annealing Algorithm output (Nonlinearity vs iteration number)

Figure 3–5 shows the Simulated annealing results when the optimization objectives are
both high nonlinearity and low autocorrelation. It is clear that the maximum achievable
nonlinearity is 112 and the minimum achievable autocorrelation is 48.

Figure 3–5: Simulatd Annealing Algorithm output (Nonlinearity & Autocorrelation vs

iteration number)

3.4.3. Tabu Search

Tabu search is a widely used modern local search technique. The next move to take is
decided using cost function values but also historical information (i.e. it uses memory of
some form). This allows the search to escape from local optima and also to explore the
search space in a productive fashion. Tabu search generally adopts a best improvement
local search but moderates this policy using historical information.

0 10 20 30 40 50 60 70 80 90 100 104

105

106

107

108

109

110

111

112

113

114

Iteration number

Nonlinearity

0 5 10 15 20 25 30 35 40
104

106

108

110
112

Iteration Number

Nonlinearity

0 5 10 15 20 25 30 35 40
45

50

55

60
65

Iteration Number

Autocorrelation

 37

If a particular solution S is reached then it becomes ‘tabu’ for some number Ts of
transitions, generally referred to as the solution’s tabu tenure. If a solution is tabu, the
search is normally prevented from moving to that solution, i.e. the local neighborhood
from which the next solution is chosen excludes those solutions that are currently tabu.
Conceptually, the currently tabu solutions together with their remaining tabu tenures form
a ‘tabu list’. In its simplest form, with common tabu tenure of T, the list becomes a FIFO
queue. The most recently visited solution is added and the solution visited T moves ago is
removed. The tabu list implements what is generally referred to as a recency criterion. It
prevents the search revisiting solutions in the short term (and so short cycles are
prevented). The higher the tabu tenure the more the search is forced to explore the
solution space. The tabu tenure may be varied during the search. Figure 2.2 outlines a
basic tabu search procedure (taken from [23], which provides an interesting consideration
of metaheuristic techniques more generally).

Figure 3–6: Basic Tabu Search Procedure

In practice maintaining lists of solutions is very inefficient. Much more common is to
keep lists of solution attributes or moves. Consider an object permutation problem, i.e.
where objects O1 ,O2...On must be arranged in some order (and there is a cost associated
with each such order). If a move (i,j) (with i<j) is taken that swaps the positions of objects
Oi and Oj then this could be made tabu for a period. A more stringent tabu criterion would
make any move involving object Oi or object Oj tabu. Thus, taking move (1, 4) would
render tabu any move of the form (a,b) where either a or b is equal to 1 or 4. Other
features may be taken into account. For example, the actual cost associated with a solution
could be made tabu. The search would be prevented from visiting solutions with the same
cost function value for the tabu tenure.

The tabu status of a move can be relaxed if taking that move would give rise to a
particularly good solution, most typically a solution better than any reached so far (this is
generally referred to as the aspiration criterion). Other aspects of history can also be
taken into account, such as long-term frequencies of particular move types. The notion of
influence is also used to guide the search; a move that causes greater change (measured in
some fashion) is deemed to be more influential. Thus, influence criteria can be created
and applied to diversify the search. For an excellent discussion of tabu search details the
reader is referred to the chapter on tabu search by Glover in [24].

 38

Figure 3–7 shows the Boolean function optimization results for Tabu search with long
term memory. It is clear that the maximum achievable Nonlinearity using this method is
114.

Figure 3–7: Tabu search Algorithm output (Nonlinearity & Autocorrelation vs iteration

number)

Figure 3–8 shows the Simulated annealing results when the optimization objectives are
both high nonlinearity and low autocorrelation. It is clear that the maximum achievable
nonlinearity is 112 and the minimum achievable autocorrelation is 48.

Figure 3–8: Tabu Search Algorithm output (Nonlinearity & Autocorrelation vs iteration

number)

3.4.4. Genetic Algorithms

Genetic algorithms are part of a class of what is known as Evolutionary algorithms.
Evolutionary algorithms are computational models that solve a given problem by

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
108

109

110

111

112

113

114

Iteration nymber

Nonlinearity

0 10 20 30 40 50 60 70 80 90 100 108
109
110
111
112

Iteration Number

Nonlinearity

0 10 20 30 40 50 60 70 80 90 100 45
50
55
60
65

Iteration Number

Autocorrelation

 39

maintaining a changing population of individuals, each with its own level of “fitness”.
The change in the population is achieved by the selection, reproduction and mutation
procedures within the method. The operation of these three procedures is dependent upon
the fitness of the individuals concerned [11].

 We begin by defining some terminology relating to natural selection:

• Parent pool: contains the current set of candidate solutions.
• Parents: the pair of individuals in the parent pool chosen for breeding.
• Children: offspring resulting from the breeding of two parents.
• Breed: the process whereby two parents are combined or mated to produce a

child.
• Fitness: the measure taken in order to ascertain which individuals will survive

to the next generation.

Genetic algorithms are characterized by the fact that all the information for any
individual in the population is encoded using some linear encoding system. This (usually
binary) encoding is intended to be analogous to natural DNA consisting of a string of four
kinds of chromosomes.

Initially, a pool of P solutions is selected randomly and the fitness of each solution in
the pool is calculated. Here, the pool consists of truth tables corresponding to (initially
random) balanced Boolean functions. From this pool pairs of parents are chosen to act as
the parents of the next generation. Parents may be chosen randomly, based on their fitness
or exhaustively (all possible paring are tried). The breading process requires some mating
function for combining parent solutions. We illustrate the general process of breeding by
describing below two common schemes for breeding functions in a population pool.

• Roulette Wheel: This scheme arises from the idea that the parents in the
population pool occupy a particular percentage angle on a roulette wheel, the
size of which is determined proportionately by their fitness measure. Thus,
fitter individuals occupy greater angles on the wheel and have a higher chance
of selection with the spinning of the wheel [25].

• Crossover: This breeding scheme is based on the genetic mechanism of
crossover which occurs in sexual reproduction. In this natural process, genetic
variation results from the breaking and recombination of linked genes in
homologous chromosomes, thus producing offspring with combined attributes
of two parents. Function breeding schemes based on crossover extend this idea
by choosing a random position in the two parent functions at which the
crossover of elements will begin and subsequently interchanging the elements
in the parent functions from this point. Thus, the resulting offspring will take
the elements of the first parent up to and including the element at the crossover
point and the elements of the second parent for the remaining positions [26].

Here we use a merging operation which combines two parents to produce a single
offspring. The offspring will be a balanced function which is similar to each of its parents
(the merge operation described in detail below). Typically, each of the offspring
undergoes some mutation. As will be seen below, the merging operation used incorporates

 40

a random mutation so a separate mutation operation is not required. At this stage the
survivors for the next iteration are chosen. This involves combining the parents and
offspring pools and selecting the most fit as the new solution pool for the next iteration.

The merging (or mating) operation is now described [18]. This operation takes two
balanced Boolean functions as input and produces a single balanced Boolean function as
offspring. Consider two Boolean functions of n inputs. The truth tables corresponding to
these functions will contain 2n bits. Call the two parent functions p1 and p2, and let pk[i]
denote the ith in the truth table of parent k. Also, n1 denotes the number of 1’s which have
been placed in the child in positions where the parents differ, and dist (p1, p2) is the
Hamming distance between the two truth tables, p1 and p2. The objective of the algorithm
is to ensure that a child is balanced. The offspring c is determined as shown in Figure 3–9.

Figure 3–9: Breeding Scheme of the Genetic Algorithm

The check in step 2 is to ensure that only parents which are close to each other are
allowed to breed. It should be noted that complementing a Boolean function’s truth table
doesn’t alter its nonlinearity. The checks in step 3(b)i and 3(b)ii are used to force
offspring to be balanced. The overall genetic algorithm is shown in

Figure 3–10: Genetic Algorithm to Improve Nonlinearity of Boolean function

 41

Figure 3–11 shows the Boolean function optimization results for Genetic algorithm for
initial population (p=10) and 10 iterations. It is clear that the maximum achievable
Nonlinearity using this method is 114.

Figure 3–11: Genetic Algorithm output (Nonlinearity vs iteration number)

Figure 3–12 shows the Genetic algorithm results when the optimization objectives are
both high nonlinearity and low autocorrelation (p=5 and number of iterations=100). It is
clear that the maximum achievable nonlinearity is 114 and the minimum achievable
autocorrelation is 40.

Figure 3–12: Genetic Algorithm output (Nonlinearity & Autocorrelation vs iteration

number)

1 2 3 4 5 6 7 8 9 10 110

110.5

111

111.5

112

112.5

113

113.5

114

Iteration Number

Nonlinearity

0 10 20 30 40 50 60 70 80 90 100 108

110

112

114

Iteration Number

Nonlinearity

0 10 20 30 40 50 60 70 80 90 100 40

45

50

55

60

Iteration Number

Autocorrelation

 42

3.4.5. Comparison between Different Optimization Results

Table 3–1 shows our optimization results for the nonlinearity and autocorrelation of 8
inputs balanced Boolean function. The best achievable result for nonlinearity as cited in
[18] is 116 and the upper bound of the nonlinearity is 118. The best achievable results for
autocorrelation as cited in [12] is 40 and the lower bound of the nonlinearity is 32.

Table 3–1: Comparison between nonlinearity and autocorrelation for different
optimization algorithms

 Hill Climbing Simulated Annealing Tabu Search Genetic Algorithm
Nonlinearity 112 114 114 114
Autocorrelation -- 48 48 40

3.5. Optimization Algorithms of S-box

A substitution box (or S-box) is a mapping from n binary inputs to m binary outputs.
Any S-box may be described by the set of m single output Boolean functions. The main
cryptographic interest has been with reversible, or bijective, S-boxes. For an S-box to be
bijective n=m, and all possible output vectors appear exactly one each [16]. A bijective S-
box implements a permutation of the input vectors. From this it is easy to show that every
linear combination of the output is a balanced function.

We will use the same optimization algorithms used with a single Boolean function to
optimize n x n S-box. For the n-output case the non-linearity is the worst (lowest) non-
linearity of all the linear combination of the n Boolean function. Similarly, the
autocorrelation is the worst (highest) over all such derived single-output functions.

Figure 3–13 shows the genetic algorithm optimization results of 8x8 s-box nonlinearity
for initial population (p=5) and ten iterations. The maximum nonlinearity achieved by this
algorithm is 100.

Figure 3–13: S-box Genetic Algorithm output (nonlinearity vs iteration number)

1 2 3 4 5 6 7 8 9 10
96

96.5

97

97.5

98

98.5

99

99.5

100

Iteration Number

Nonlinearity

 43

Figure 3–14 shows the simulated annealing optimization results of 8x8 s-box
nonlinearity for (MIL=20), (T=100), (α=0.9) and 40 iterations. The maximum
nonlinearity achieved by this algorithm is 98.

Figure 3–14: S-box simulated annealing output (nonlinearity vs iteration number)

Figure 3–15 shows the Tabu search with long term memory optimization results of 8x8
s-box nonlinearity for 100 iterations. The maximum nonlinearity achieved by this
algorithm is 96.

Figure 3–15: Tabu search S-box output (nonlinearity vs iteration number)

Figure 3–16 shows the Genetic algorithm results when the optimization objectives are
both high nonlinearity and low autocorrelation (p=5 and number of iterations=100). It is
clear that the maximum achievable nonlinearity is 114 and the minimum achievable
autocorrelation is 40.

0 5 10 15 20 25 30 35 40 90
91
92
93
94
95
96
97
98

Iteration Number

Nonlinearity

0 10 20 30 40 50 60 70 80 90 100 90

91

92

93

94

95

96

Iteration Number

Nonlinearity

 44

Figure 3–16: S-box Genetic Algorithm output (Nonlinearity & Autocorrelation vs

iteration number)

It is clear that the best results are achieved using genetic algorithm and our new
suggested Rijndael like s-box will be that one obtained using genetic algorithm and its
objectives are high nonlinearity and low autocorrelation (98,88). Table 3–2 shows our
suggested Rijndael like s-box.

Table 3–2: Rijndeal Like S-Box
 Y

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 D6 81 89 12 86 2A 2D C4 7E DF 1D 9E A2 97 94 21
1 37 53 1B C8 C5 52 6F 8F 77 3A EA E1 8D 19 9F F8
2 8B CD 43 36 7C 26 32 F7 59 BA F4 EF 61 AF 82 6E
3 C7 DC 85 3C ED 5 15 46 0B 35 8A B5 B0 7 65 DD
4 9B 1C 9 5C 4 A5 2B 1E 64 FA F5 EE 22 C0 58 49
5 E9 27 B8 79 40 E3 3F 8 BE 3D 33 5B B1 90 34 B2
6 5A CB AB 1A F2 3E 4C 29 67 6 CF DB AA D7 A1 47
7 83 F9 E5 80 16 57 4A 4F F0 B7 BC C2 84 0C 99 5E
8 A4 FF 48 55 0E B9 17 CC 93 D4 13 0 FE 3B 9C 8C
9 6B 0A 44 10 D0 50 C9 D5 E8 69 91 B6 88 1F 25 DE
A B3 7B 2F 0F 98 BF D8 A6 C1 39 41 18 75 60 24 1
B 0D 4D 6C 14 73 D3 7F 20 E6 74 7A 63 E7 66 A7 2C
C A8 E4 EC D9 76 6D 30 31 BB CE D1 92 2 42 BD 7D
D 68 62 E2 9D E0 DA D2 28 95 38 5D 2E F6 CA 71 A9
E 6A 96 54 9A FC 23 8E 51 5F F3 A3 AC FB C6 87 78

x

F 4B B4 A0 56 72 3 AE AD 45 F1 11 EB C3 4E 70 FD

2 4 6 8 10 12 14 16 18 20
87

87.5

88
88.5

89

Iteration number

Autocorrelation

2 4 6 8 10 12 14 16 18 20
96

96.5

97
97.5

98

Iteration number

Nonlinearity

 45

C h a p t e r 4

IMPLEMENTATION APPROACHES FOR THE AES

In this chapter, we introduce the architectural optimization approaches for the AES
algorithm; algorithmic optimizations for each round unit in the AES algorithm are
described. The last section explores resource sharing between encryptor and decryptor.

4.1. Architectural Optimization

A block cipher encrypts plain text in fixed-size n-bit blocks (n = 128 for AES).
Messages longer than n bits are divided into n-bit blocks, and each block is encrypted
separately. Basically, there are five modes of operation: electronic codebook (ECB),
cipher block chaining (CBC), cipher feedback (CFB), output feedback (OFB) and counter
(CTR) mode. Non-feedback (NFB) modes such as the ECB mode offer less security, but
can achieve great speedup by processing multiple blocks simultaneously. The other three
basic modes belong to feedback (FB) mode, which can offer a higher level of security but
can hardly achieve any speedup by multi-block processing due to the existence of
feedback the processing of the next block cannot begin until the current block is finished.

4.1.1. Architectures of AES Encryptor/ Decryptor

Three types of architectures can be used to increase the speed of encryptor/
decryptor by duplicating hardware for implementing each round, which is also called
round unit in this paper. These architectures are based on pipelining, sub-pipelining, and
loop unrolling [27]. They are illustrated in Figure 4–1 together with basic reference
architecture.

4.1.1.1. Pipelining

The pipelined architecture can increase the speed of encryption/ decryption by
processing multiple blocks of data simultaneously. It is realized by inserting rows of
registers among combinational logic. Parts of logic between two consecutive registers
form pipeline stages. Each pipeline stage is one round unit in this case. During each clock
cycle, the partially processed data moves to the next stage and its place is taken by the
subsequent data block. The number of round units in each loop, k, is usually chosen as a
divisor of Nr and the maximum value of k is Nr, in which case it becomes a fully
pipelined architecture. For a k-round pipelined architecture, when a partially processed
block reaches the kth round, it will be fed back to the first round until all the Nr rounds are
performed on this block. After the pipeline reaches its full depth, that is after the first
block reaches the kth stage, k blocks of data are processed simultaneously in different
stages and k blocks of data are processed every Nr cycles. The area of the pipelined
architecture is proportional to k.

 46

4.1.1.2. Sub-Pipelining

Similar to the pipelining, sub-pipelining also inserts rows of registers among
combinational logic, but in this case, registers are inserted both between and inside each
round unit. If each round unit can be divided into r stages with equal delay, a k-round sub-
pipelined architecture can achieve approximately r times the speed of a k-round
pipelined architecture with a slight increase of area caused by additional registers and
control logic. However, dividing each round unit into an arbitrary number of stages does
not always bring speedup. Since the minimum clock period is decided by the indivisible
combinational element with the longest delay, dividing the rest of the round unit into
more stages with shorter delay does not reduce the minimum clock period. Although more
blocks of data are being processed simultaneously, the average number of clock cycles to
process one block of data is increased by the same proportion. Therefore the overall speed
does not improve despite increased area caused by the additional registers.

Figure 4–1: Three types of architecture of encryptor/decryptor with a basic reference

architecture: (a) pipelined architecture, (b) sub-pipelined architecture, (c) loop unrolled
architecture, (d) basic reference architecture

 47

4.1.1.3. Loop Unrolling

Loop unrolled or unfolded architectures can process only one block of data at a time,
but multiple rounds are performed in each clock cycle. The unrolling or unfolding factor,
k, is usually chosen as a divisor of Nr and the maximum value of k is Nr. The number of
cycles to process one block of data is Nr / k in this case. Meanwhile, the clock period of a
k-round loop unrolled architecture is increased to slightly smaller than k times the clock
period of a pipelined architecture because of the setup time and propagation delay of
registers. The area of this architecture is also proportional to the number of rounds in each
loop.

Most of the proposed implementations can be classified into one of the above three
architectures. Detailed studies of all these architectures were carried out in [28] and [29].
In this section, we separately address the speedup factor of these three architectures for
FB and NFB modes compared to the basic reference architecture.

4.1.2. Architectural Optimization for Non-Feedback Modes

The speed of a system can be measured by throughput, which is given by

 / secThroughput average number of bits processed ond=

In the case of the AES algorithm, it can also be expressed as

128 /(
)

Throughput average number of clock cycles to
process one block x clock period

=
 (4.1)

Maximum achievable throughput for each architecture is compared in this section. In
the basic architecture in Figure 4–1-d, only one round is performed in each clock cycle, so
Nr clock cycles are needed to finish processing one block of data. The minimum clock
period tbasic can be expressed as

 =basic round setup prop muxt t t t t+ + + (4.2)

In the above equation, tround is the delay of the combinational logic in each round unit; tmux

denotes the delay of the multiplexer, whereas tsetup and tprop stands for the setup time and
propagation delay of the registers, respectively. From equation (4.1), the maximum
achievable throughput of the basic architecture is given by

128 / ()basic basicthroughput Nr x t= .

In the pipelined architecture in Figure 4–1-a, assuming k is a divisor of Nr, after the
initial k clock cycles, k blocks of data are processed every Nr cycles. Meanwhile, the
minimum clock period is the same as that of the basic architecture. The speedup of pipelined
architecture over the basic architecture is / pipe basicthroughput throughput k=

 48

The area of this architecture is proportional to the number of pipeline stages, k.
Tradeoffs between area and speed can be easily made by changing k. In the sub-pipelined
architecture of the AES algorithm, each of the round units should be divided into no more
than two stages according to the former discussion in this section.

SubBytes/InvSubBytes is usually implemented by look-up tables.
ShiftRows/InvShiftRows does not need any logic to implement,
MixColumns/InvMixColumns can be implemented by XOR gates, and
AddRoundKey is only one step of XOR operation. Hence each round unit is usually
divided into r = 2 stages, one for SubBytes/InvSubBytes transformation and another for
the rest of the transformations. Assuming the two stages in each round have equal delay,
2k blocks of data will be processed every 2Nr cycles after the pipeline reaches its full
depth. Let (+) /setup prop mux roundt t t tτ = + . The minimum clock period of sub-pipelining is
(0.5) /(1)τ τ+ + times that of the basic architecture. The speed up of a k-round sub-
pipelined architecture with r = 2 is given by

- / (1) /(0.5) sub pipe basicthroughput throughput k τ τ= + + (4.3)

The area of sub-pipelined architecture is also proportional to the parameter k but does
not change much with r. Increasing number of inner round stages only introduces more
registers, whose area is small compared to the total area of implementation.

The throughput of this architecture is (1) /(0.5)τ τ+ + times that of a pipelined
architecture with the same k. Usually τ is small, so there is almost twice speedup over
pipelining at the cost of r – 1 additional rows of registers.

In the loop unrolled architecture in Figure 4–1-c, assuming k is a divisor of Nr, one block
of data is processed every Nr / k cycles. However, the minimum clock period is increased
to

lu round setup prop muxt k t t t t= × + + + (4.4)

Which is () /(1)k τ τ+ + times the minimum clock period of the basic architecture.
Hence the speedup of a k- round loop unrolled architecture can be expressed as

/ (1) /(1 /) lu basicthroughput throughput kτ τ= + + (4.5)

The area of loop unrolled architecture is also proportional to the number of rounds per
loop; k. Compared to the k-stage pipelined architecture, the speedup is much lower at
roughly the same area.

Depending on different optimization criteria, different architectures can be employed.
Optimization for maximum speed can be realized by a fully sub-pipelined architecture. In
the application requiring minimum area, the basic architecture is desired. In the case of
optimum speed/area ratio, sub- pipelining seems to be the best choice. Numerous
implementations of these architectures on different technologies have been studied. The

 49

reported fastest FPGA implementation can reach 12 Gbit/sec on a Xilinx Virtex-E
XCV812E-8BG560 device for a fully pipelined 128-bit key encryptor in NFB modes
[30].

4.1.3. Architectural Optimization for Feedback Mode

In feedback modes, the encryption/ decryption of the next block cannot start until the
current block is finished. In this case, pipelining does not lead to any speedup, because
only one stage is processing one block of data in each cycle, while the other stages are
idle. Meanwhile, the area increases proportionally to k. Therefore pipelined architecture is
not suitable for feedback applications. Loop-unrolled architecture, however, can bring
some speedup at the cost of significantly increased area. The speedup which can be
achieved is the same as that in non-FB modes given by equation (4.5). Sub-pipelining can
even deteriorate the performance; Nr x r cycles are needed to encrypt/decrypt one block of
data, but even in the optimum case when each inner stage has equal delay, the clock
period is longer than tbasic / r because of the setup and propagation delay of the registers.
The fastest implementation for FB modes reported so far employed a fully loop unrolled
architecture, and achieved a throughput of 1950.03 Mbits/sec based on Mitsubishi
Electric’s 0.35 micron CMOS technology [31].

4.2. Algorithmic Optimization

A complete AES system can be divided into three major blocks: Key Expand,
Control, and EnDecrypt, as illustrated in Figure 4–2. The Key Expand block loads keys,
performs Key Expansion transformation, and generates proper roundkeys under the
control signals from the Control block. Control block takes ‘start’ signal, ‘reset’ signal,
‘enc’ signal, and ‘key_length’ signal from outside and generates all the control signals
for the whole system. The ‘enc’ signal and the ‘key_length’ signal are optional.
The ‘enc’ signal is the control signal for encryption/decryption; it is needed when the
system can perform both encryption and decryption. The ‘key_length’ signal
gives the key length information; it is needed when the system can perform multiple key
length encryption/decryption. The EnDecrypt block gets roundkeys from the Key-
Expand block and encrypts/ decrypts ‘data_in’ according to the AES algorithm. Each of
the architectures pipelining, loop unrolling, and sub-pipelining covered in the last
section can be used in the EnDecrypt block. The speed and area trade-offs of the AES
algorithm can not only be made by changing the overall architecture of the EnDecrypt
block, but also by exploiting the implementation of each round unit. A variety of
methods have been brought up to implement individual round unit [31], [33–37]. They
are discussed in detail in this section.

 50

Figure 4–2: Block diagram of the AES system

4.2.1. Implementation of Separate Transformations

No optimization can be performed on ShiftRows/ InvShiftRows and AddRoundKey
transformations, since no logic gates are needed for the former transformation and only
one step of XOR operation is needed for the latter. However, different methods can be
used to implement the SubBytes/ InvSubBytes and MixColumns/InvMixColumns
transformations.

4.2.2. Implementation of SubBytes/ InvSubBytes

SubBytes/InvSubBytes is usually implemented by look-up tables. Each S-box/S –1-
box needs a look-up table of 256 x 8 = 2k-bits and each round needs 16 S-boxes/S –1-
boxes, so the area for look-up tables becomes huge when multiple round units are
implemented. For area critical applications, a better choice is to map the arithmetic
operations on GF(28) to isomorphic field GF((24)2). This implementation requires
smaller area for look-up tables, but has longer delay [20, 21].

4.2.3. Implementation of MixColumns/ InvMixColumns

In the MixColumns transformation, we need to implement constant multiplication of
{02} and {03} in GF(28). Assuming X is a byte in the State, {02}X can be
implemented by shifting and bit-wise XOR operations, and {03}X can be computed by
({02}X) ⊕ X. If X is expressed in binary form as {x7, x6, x5, x4, x3, x2, x1, x0}, {02}X can be
calculated by

7 6 5 4 3 2 1 0 7 7 7 7{02} { , , , , , , , , 0} {0, 0, 0, , , 0, , }X x x x x x x x x x x x x= ⊕ (4.6)

Since 0 ⊕ xi = xi, equation (4.6) only needs 4 XOR gates to implement. The block diagram
in Figure 4–3 shows the straightforward way to calculate S'0, c (0 ≤ c < 4) in the
MixColumns transformation [8]. Since {01}X = X, X instead of {01}X is used in this and the
following figures. Calculation of S'1, c, S'2, c, and S'3, c can be done by connecting

 51

appropriate {02}X, {03}X, or X of S'1, c, S'2, c, and S'3, c to the last row of XOR gates in
Figure 4–3 according to equation (2.22). As shown in the figure, the critical path has 4 XOR
gates and a total of (4 x 8 + 4) x 4 =144 2-input XOR gates is needed to implement the
MixColumns transformation for one column of the State.

Figure 4–3: Block diagram for straightforward implementation of the MixColumns

transformation

The InvMixColumns transformation is more complicated. Constant multiplications
used in the InvMixColumns transformation can be expressed as

{0b}X = {08}X ⊕ {02}X ⊕ X, {0d}X = {08}X ⊕ {04}X ⊕ X,
{09}X = {08}X ⊕ X, {0e}X = {08 }X{ ⊕ {04}X ⊕ {02}X

A straightforward way to calculate S'0, c (0 ≤ c < 4) of the State in the InvMixColumns
transformation is illustrated in Figure 4–4. In order to simplify the diagram, an XTime
block is introduced as shown in Figure 4–5. XTime block implements the constant
multiplication by {02} in GF(28) [9], each XTime block consists of 4 XOR gates and the
critical path includes only one XOR gate.

 52

Figure 4–4: Block diagram for straight forward implementation of the InvMixColumns

transformation

Figure 4–5: Block diagram of Xtime

In the InvMixColumns transformation, the calculation for the other bytes can be carried
out similarly according to equation (2.24). As shown in Figure 4–4, the critical path is 6
XOR gates, and a total of (10 x 8 + 3 x 4) x 4 = 368 XOR gates is needed to implement the
InvMixColumns transformation for one column of the State.

Studies in [33, 42, 36] have proposed alternative ways to implement the
MixColumns/InvMixColumns transformation. Both the studies in [33, 36] exploited the
idea of substructure sharing. In [33]’s study, taking the bytes in the first row of the State
for example,

'
0, 0, 1, 2, 3,[{02}{03}{01}{01}] []Tc c c c cs s s s s= × (4.7)

 53

This can be rewritten as

'
0, 0, 1, 1, 2, 3, {02}() ()c c c c c cS S S S S S= + + + + (4.8)

The above equation can be realized as shown in Figure 3–6.

Figure 4–6: Block diagram for substructure sharing implementation of MixColumns

transformation

 The computation of the other bytes in the State can be implemented by similar
structure and the same number of XOR gates. Compared to Figure 4–4, the total number
of XOR gates for computing one column of the State remains 144, but the critical path has
been reduced to 3 XOR gates.

The same substructure sharing idea can be used in the InvMixColumns
transformation. For example, the bytes in row one of the State are calculated

 '
0, 0, 1, 2, 3,[{0 }{0 }{09}{0 }] []Tc c c c cs e b d s s s s= × (4.9)

This can be rewritten as

'
0, 0, 1, 2, 3, 0, 2,

0, 1, 1, 2, 3,

 {04}({02}() {02}() ())
 {02}() ()

c c c c c c c

c c c c c

S S S S S S S
S S S S S

= + + + + +

+ + + + +
 (4.10)

Equation (4.10) can be implemented as shown in Figure 4–7. Compared to the
straightforward implementation in Figure 4–4 , the number of XOR gates is reduced to (8
x 8 + 4 x 4) x 4 = 320 for computing one column of the State, but the critical path is
increased to 7 XOR gates.

 54

Figure 4–7: Block diagram for substructure sharing implementation of the InvMixColumns

transformation

 Substructure sharing can be used in another way as in [36]. Since

{0b}X = ({08}X ⊕ X) ⊕ {02}X,
{0d}X = ({08}X ⊕ X) ⊕ {04}X,
{09}X = {08}X ⊕ X,
{0e}X = {08}X ⊕ {04}X ⊕ {02}X.

Three of the above equations have the common factor {08}X⊕X. Therefore, hardware
usage can be reduced by first calculating the common factor and then using it in the
calculation of the other equations. This approach leads to the implementation shown in
Figure 4–8. In this figure, the critical path still has 7 XOR gates, but the total number of
XOR gates has been reduced further to (8 x 8 + 3 x 4) 4= 304 for calculation of one
column of the State.

 55

Figure 4–8: Block diagram for alternative substructure sharing implementation of the

InvMixColumns transformation.

Another approach in [35], [36] makes use of the polynomial notation of elements in
GF(28) with irreducible polynomial m(α)=α8+α4+α3+α+1. For example, {03} can be
expressed as polynomial α+1,

Y= {03}X=(α+1) 7 6 5 4 3 2
7 6 5 4 3 2 1 0() mod ()x x x x x x x x mα α α α α α α α+ + + + + + +

Then each bit of Y can be expressed as
y7 = x7 ⊕ x6, y6 = x6 ⊕ x5, y5 = x5 ⊕ x4, y4 = x7 ⊕ x4 ⊕ x3,
y3 = x7 ⊕ x3 ⊕ x2, y2 = x2 ⊕ x1, y1 = x7 ⊕ x1 ⊕ x0, y0 = x7 ⊕ x0.

Similarly, all the constant multiplication used in MixColumns and InvMixColumns
transformations can be calculated by the equations in Table 4–1.

 56

Table 4–1: Individual Bit Expression for Constant Multiplications
 {02}X {03}X {09}X {0b}X {0d}X {0e}X

y7 x6 x6 ⊕ x7 x4 ⊕ x7 x4 ⊕ x6 ⊕ x7 x4 ⊕ x5 ⊕ x7 x4 ⊕ x5 ⊕ x6

y6 x5 x5 ⊕ x6 x3 ⊕ x6 ⊕ x7 x3 ⊕ x5 ⊕ x6 ⊕ x7 x3 ⊕ x4 ⊕ x6 ⊕ x7
x3 ⊕ x4 ⊕ x5 ⊕
x7

y5 x4 x4 ⊕ x5
x2 ⊕ x5 ⊕ x6
⊕ x7

x2 ⊕ x4 ⊕ x5 ⊕ x6
⊕ x7

x2 ⊕ x3 ⊕ x5 ⊕ x6
x2 ⊕ x3 ⊕ x4 ⊕
x6

y4 x3 ⊕ x7
x3 ⊕ x4
⊕ x7

x1 ⊕ x4 ⊕ x5
⊕ x6

x1 ⊕ x3 ⊕ x4 ⊕ x5

⊕ x6 ⊕ x7
x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕
x7

x1 ⊕ x2 ⊕ x3 ⊕
x5

y3 x2 ⊕ x7
x2 ⊕ x3
⊕ x7

x0 ⊕ x3 ⊕ x5
⊕ x7

x0 ⊕ x2 ⊕ x3 ⊕ x5
x0 ⊕ x1 ⊕ x3 ⊕ x5 ⊕
x6 ⊕ x7

x0 ⊕ x1 ⊕ x2 ⊕
x5 ⊕ x6

y2 x1 x1 ⊕ x2 x2 ⊕ x6 ⊕ x7 x1 ⊕ x2 ⊕ x6 ⊕ x7 x0 ⊕ x2 ⊕ x6 x0 ⊕ x1 ⊕ x6

y1 x0 ⊕ x7
x0 ⊕ x1
⊕ x7

x1 ⊕ x5 ⊕ x6
x0 ⊕ x1 ⊕ x5 ⊕ x6

⊕ x7
x1 ⊕ x5 ⊕ x7 x0 ⊕ x5

y0 x7 x0 ⊕ x7 x0 ⊕ x5 x0 ⊕ x5 ⊕ x7 x0 ⊕ x5 ⊕ x6 x5 ⊕ x6 ⊕ x7

Studies in [35], [36] did not further investigate the individual bit calculation of
constant multiplication. Direct implementation of the equations in Table 4–1 does not
bring any area or critical path reduction. However, the idea of substructure sharing can be
also applied to the calculation of individual bits. After making modifications to the
algorithm in [39], the following algorithm is derived to find the substructures that can be
shared in the constant multiplications.

1. round = 0.
2. For i, j = 0 to 7 + round, count the number of times xi ⊕ xj appears in all the equations,

denote the number by N(i, j). Find the biggest number N(m, n). If there is a tie, pick one at
random.

3. If N(m, n) > 1, then replace xm ⊕ xn in all those equations with x7 + round, otherwise STOP.
4. round = round + 1, go to step 2.

For example, in the MixColumns transformation, we need to calculate the sixteen
equations in the second and third columns in Table 4–1 for each byte in the State, the
biggest number of third columns in Table 4–1 for each byte in the State. The biggest
number of times xi ⊕ xj appears is three when (i =0, j = 7) or (i = 3, j = 7). We pick x0 ⊕ x7

randomly and replace x0 ⊕ x7 with x8 in all equations, and then the second and third
columns in Table 4–1 become Table 4–2. In the next round, the biggest number of xi ⊕ xj

in common in all the equations in Table 4–2 is three, when (i = 3, j = 7). Replacing x3 ⊕ x7

with x9 in Table 4–2, Table 4–3 is derived. In the third round, the biggest N(i, j) is 1, so
the algorithm stops and Table 4–3 is the final table. MixColumns can be then using them in
the computing of other equations according to Table 4–3.

Figure 4–9 illustrates this implementation.

 57

Table 4–2: Substructure Sharing in
Individual Bit Calculation for the

MixColumns Transformation after the
First Round

 {02}X {03}X

y7 x6 x6 ⊕ x7
y6 x5 x5 ⊕ x6
y5 x4 x4 ⊕ x5
y4 x3 ⊕ x7 x3 ⊕ x4 ⊕ x7
y3 x2 ⊕ x7 x2 ⊕ x3 ⊕ x7
y2 x1 x1 ⊕ x2

y1 x8 x1 ⊕ x8

y0 x7 x8

Table 4–3: Substructure Sharing in
Individual Bit Calculation for the

MixColumns Transformation after the
Second Round

 {02}X {03}X

y7 x6 x6 ⊕ x7
y6 x5 x5 ⊕ x6
y5 x4 x4 ⊕ x5
y4 X9 x4 ⊕ x9
y3 x2 ⊕ x7 x2 ⊕ x9
y2 x1 x1 ⊕ x2

y1 x8 x1 ⊕ x8

y0 x7 x8

Table 4–4: Substructure Sharing in Individual Bit Calculation for the
InvMixColumns Transformation

 {09}X {0b}X {0d}X {0e}X

y7 x9 x6 ⊕ x9 x5 ⊕ x9 x4 ⊕ x8

y6 x6 ⊕ x13 x8 ⊕ x13 x6 ⊕ x17 x5 ⊕ x17
y5 x7 ⊕ x18 x9 ⊕ x18 x8 ⊕ x12 x4 ⊕ x6 ⊕ x12
y4 x4 ⊕ x10 x10 ⊕ x17 x2 ⊕ x9 ⊕ x15 x12 ⊕ x15

y3 x11 ⊕ x13 x11 ⊕ x12 x13 ⊕ x14 x2 ⊕ x14
y2 x19 x1 ⊕ x19 x0 ⊕ x16 x0 ⊕ x1 ⊕ x6
y1 x10 x7 ⊕ x14 x7 ⊕ x15 x11
y0 x11 x7 ⊕ x11 x0 ⊕ x8 x7 ⊕ x8

Where

x8 = x5 ⊕ x6 x9 = x4 ⊕ x7

x10 = x1 ⊕ x8 x11 = x0 ⊕ x5

x12 = x2⊕x3 x13 = x3 ⊕ x7

x14 = x0 ⊕ x10 x15 = x1 ⊕ x5

x16 = x2 ⊕ x6 x17 = x3 ⊕ x9

x18 = x2 ⊕ x8 x19 = x7 ⊕ x16

 58

Figure 4–9: Block diagram for bit-wise implementation of the MixColumns transformation

The critical path remains 4 XOR gates as in Figure 3–3, but the total number of XOR
gates to calculate on a column of the State has been reduced to 4 x (10 + 3 x 8) = 136.

Applying the same algorithm to the equations in the last four columns in Table 4–1, we
get Table 4–4 as the final table for substructure sharing in the InvMixColumns
transformation. According to this table, the critical path of the InvMixColumns
transformation can only have 6 XOR gates if tree adders are used. At the same time, the
total number of XOR gates to calculate one column of the State has been reduced to (30 +
12 + 24) x 4 = 264.

4.2.4. Look-Up Table Implementation of the Whole Round Unit

Look-up tables not only can be used to implement the SubBytes/ InvSubBytes
transformation, they can also be used to incorporate MixColumns/InvMixColumns
transformation [9, 30, 35, 40]. The T-box approach implements the combination of
SubBytes, ShiftRows and MixColumns transformations by look-up tables. Beginning
from the SubBytes transformation, the updated State after the MixColumns transformation
can be expressed as, for 0 ≤ c < Nb,

'
0, 0,
'
1, 1, 1

'
2, 22,

'
3, 33,

()02 03 01 01
()01 02 03 01

01 01 02 03 ()
03 01 01 02 ()

c c

c c

cc

cc

s Subbytes s
s Subbytes s

Subbytes ss
Subbytes ss

+

+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (4.11)

 59

Instead of storing only the value of SubBytes(Si, j) in the S-box approach, the T-box
approach stores values of SubBytes(Si, j), {02}SubBytes(Si, j) and {03}SubBytes(Si, j). Each
T-box has three 8-bits outputs and can be expressed as

1 , ,

, 2 , ,

3 , ,

() ()

() () {02} () . 0 , 4.

() {03} ()

i j i j

i j i j i j

i j i j

T s SubBytes s

T s T s SubBytes s for i j

T s SubBytes s

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= = ≤ <⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (4.12)

Now equation (4.11) can be rewritten as

'
0, 2 0, 3 1, 1 1 2, 2 1 3, 3
'
1, 1 0, 2 1, 1 3 2, 2 1 3, 3

'
1 0, 1 1, 1 2 2, 2 3 3, 32,

'
3 0, 1 1, 1 1 2, 2 2 3, 33,

() () () ()
() () () ()
() () () ()
() () () ()

c c c c c

c c c c c

c c c cc

c c c cc

s T s T s T s T s
s T s T s T s T s

T s T s T s T ss
T s T s T s T ss

+ + +

+ + +

+ + +

+ + +

⎡ ⎤ ⊕ ⊕ ⊕⎡
⎢ ⎥

⊕ ⊕ ⊕⎢ ⎥
=⎢ ⎥ ⊕ ⊕ ⊕⎢ ⎥

⎢ ⎥ ⊕ ⊕ ⊕
⎣ ⎦

0 c Nb

⎤
⎢ ⎥
⎢ ⎥ ≤ <⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.13)

The combination of SubBytes, ShiftRows and MixColumns transformations can be
implemented by XORing the outputs of T-boxes. In the final round of encryption, there is
no MixColumns transformation, so S-box instead of T-box should be used. In the fully
pipelined or fully loop unrolled architecture, this will not be a problem, since each round
uses separate hard- ware. However, for other architectures in which one round unit is used
to perform different rounds of encryption in different clock cycles, T-box cannot be simply
replaced by S-box. Adding an additional S-box is a solution, but this will lead to extra area
for look-up tables. Another solution is to extract S-box from T-box; S-box is exactly the T1

output of a T-box [35]. The T-box implementation has shorter delay than the S-box
approach. The delay of MixColumns is eliminated by adding a delay of 2 XOR gates if a
tree adder is used to add up the four items in each row of the matrix on the right side of
[40]. Based on the same technology and assumptions, the T-box approach improves the
speed of an encryptor from 7 Gbit/sec in [41] to 12 Gbit/sec in [31]. However, the price
paid for shorter delay is the three-times-bigger look-up tables.

Correspondingly, T –1-box can be used to implement the combination of InvSubBytes,
InvShiftRows and InvMixColumns transformations. From the beginning of
InvSubBytes transformation, the updated State after the InvMixColumns transformation
can be expressed as

'
0, 0,
'
1, 1, 1

'
2, 22,

'
3, 33,

()0 0 0 09
()09 0 0 0

0 09 0 0 ()
0 0 09 0 ()

c c

c c

cc

cc

s InvSubbytes se b d
s InvSubbytes se b d

d e b InvSubbytes ss
b d e InvSubbytes ss

+

+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

 (4.14)

 60

For 0≤ c < Nb. Each T –1-box stores four sets of values:

, ,

, ,

{09} (), {0 } (),

{0 } (), {0 } (),
i j i j

i j i j

InvSubbytes s b InvSubBytes s

d InvSubbytes s e InvSubBytes s

Unlike T-box, each T –1-box has four 8-bit outputs and is four times the size of an S-
box, and can be expressed as

1
0 , ,

1
1 , ,1

, 1
,2 ,

1
,3 ,

() {09} ()

() {0 } ()
() . 0 , 4.

{0 } ()()
{0 } ()()

i j i j

i j i j
i j

i ji j

i ji j

T s InvSubBytes s

T s b InvSubBytes s
T s for i j

d InvSubBytes sT s
e InvSubBytes sT s

−

−
−

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = ≤ <⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (4.15)

Now equation (4.14) can be rewritten as

' 1 1 1 1
0, 3 0, 1 1, 1 2 2, 2 0 3, 3

' 1 1 1 1
1, 0 0, 3 1, 1 1 2, 2 2 3, 3

' 1 1 1 1
2, 2 0, 0 1, 1 3 2, 2 1 3, 3

' 1 1
3, 1 0, 2 1

() () () ()

() () () ()

() () () ()

() (

c c c c c

c c c c c

c c c c c

c c

s T s T s T s T s

s T s T s T s T s

s T s T s T s T s

s T s T s

− − − −
+ + +

− − − −
+ + +

− − − −
+ + +

− −

⎡ ⎤ ⊕ ⊕ ⊕
⎢ ⎥

⊕ ⊕ ⊕⎢ ⎥
=⎢ ⎥

⊕ ⊕ ⊕⎢ ⎥
⎢ ⎥ ⊕⎣ ⎦

1 1
, 1 0 2, 2 3 3, 3

0

) () ()c c c

c Nb

T s T s− −
+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥

≤ <⎢ ⎥
⎢ ⎥
⎢ ⎥⊕ ⊕⎣ ⎦

 (4.16)

Similar to the encryption case, S–1-box needs to be used in the final round, but
none of the outputs of T –1-box is InvSubBytes(S i, j) this time. [35] brought up an
efficient method to calculate InvSubBytes(Si, j) from theoutput of T –1-box. For any specific
Si,j , each output byte of a T –1-box can be expressed in binary form as T –1(S) = [tm7, tm6,
tm5, tm4, tm3, tm2, tm1, tm0] (m = 0,1, 2, 3), and InvSubBytes(Si, j) can be expressed in binary
form as InvSubBytes(Si, j) = 1 1 1 1 1 1 1 1

7 6 5 4 3 2 1 0[, , , , , , ,]s s s s s s s s− − − − − − − − .

Since {09}-1= {4f},{0b}–1 = {c0}, {0d}–1 = {e1}, and {0e}–1 = {e5},

1 1
, 0 , 1 ,

1 1
2 , 3 ,

() {4 } () { 0} ()

{ 1} () { 5} ()
i j i j i j

i j i j

InvSubBytes s f T s c T s

e T s e T s

− −

− −

= =

= =
 (4.17)

Each of the 8 bits of InvSubBytes (Si, j) can be computed as functions of individual bits
in T –1(S). Four sets of expressions of sn (0 ≤ n < 8) can be derived from equation (4.17).
Expressions with the shortest delay are chosen for each sn-1

 from the four sets as shown in
Table 4–5. From Table V, at most two XOR gates are needed to compute each bit of
InvSubBytes(Si, j) from T –1-box. The critical path of the final round in T –1-box
approach consists of a look-up table, 2 XOR gates to extract the value of InvSubBytes(Si, j)
and another XOR gate to add up the roundkey. The critical path of other round
units includes a look-up table, 2 XOR gates to add up four outputs from different T-1 -

 61

boxes according to equation (4.14), using adder tree structure, and another XOR
gate to add the roundkeys. We can observe that the delays of each round in a T –1-
box approach are the same, and equal the total delay of a look-up table and 3 XOR gates.
Compared to the total delay of a look-up table and at least 6 XOR gates in the S–1-box
approaches, this approach has shorter delay but the price paid for that is the requirement of
4- times-bigger look-up tables of an S–1-box approach, which makes pipelining or loop
unrolling more expensive.

Table 4–5: Extraction of S–1-box from T –1-box

4.2.5. Implementation of Key Expansion

Roundkeys can either be generated beforehand and stored in memory or be generated
on the fly. The former case is suitable for the applications which do not change keys
constantly and can afford large area for memory.

During encryption/decryption, roundkeys can be read out from memory by appropriate
address, and there is no extra delay for decryption. In this case, reducing the critical path
of Key Expansion can reduce the overhead, but will not speed up the whole system.
While in the applications which need to change keys constantly, expanding keys on the
fly is preferred. From Figure 2–12, we can observe that the critical path of Key Expansion
consists of one multiplexer, one S-box, and one XOR gate. Since the critical path of Key
Expansion is shorter than that of a round unit, reducing the critical path of Key Expansion
will not increase the speed of the whole system. Generating roundkeys on the fly
eliminates the requirement for key storage, but brings overhead for decryption since
decryption can only begin after the last roundkey is generated.

4.3. Joint Implementation Issues of Encryptor/ Decryptor

Source sharing becomes important when only small area is available for implementing
both encryptor and decryptor, as in smart cards and cellular phones. While the algorithmic
strength in the last section can be exploited to reduce area, the design could be improved
further by sharing the resources between encryptor and decryptor.

4.3.1. Joint Implementation of SubBytes and InvSubBytes

In [10], each S-box/S–1-box requires a 2k-bit look-up table, and each round unit needs 32
such look-up tables to implement bo th encryp t ion and decryption. However, studies
in [9, 16] proposed that the SubBytes and InvSubBytes transformation can share a 2k-

 62

bit look-up table for each byte in the State. The SubBytes transformation can be
expressed as

-1' S M S c= + (4.18)

Where

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

And c = [0 1 1 0 0 0 1 1].

The inverse of (18) is given by

 1 ' 1
, ,(())i j i jS M S c− −= + (4.19)

From equations (4.18) and (4.19), the SubBytes and InvSubBytes transformations can
share look-up tables which only implement multiplicative-inverse in GF(28). Figure 4–10
illustrates the block diagram for a joint SubBytes and InvSubBytes transformation [33].
The Joint S-box block is a look-up table which stores the value of multiplicative inverse,
while the two rectangular blocks in the top implement the corresponding matrix
multiplication and addition. The signal ‘enc’ is ‘1’ when it’s in encryption mode, and is ‘0’
otherwise.

Figure 4–10: Joint implementation of the SubBytes and the InvSubBytes transformations

Since both M and M –1 are binary matrices, the matrix multiplication block can be
implemented simply by XOR gates. Another approach is to store the value of S- box
and S–1-box in two separate ROMs, and read the initial values into RAMs at the
beginning of encryption/decryption [31]. This approach eliminates the duplicated

 63

memory by 2 additional ROMs, but introduces an over- head of 256 clock cycles to read in
the initial values.

4.3.2. Resource Sharing in MixColumns and InvMixColumns

Although equation (4.10) leads to an InvMixColumns implementation with
neither the shortest delay nor the smallest area, combined with equation (4.8), it
leads to the hardware implementation with least area of joint MixColumns/
InvMixColumns transformation. Figure 4–11 illustrates the diagram according to
equations (4.8) and (4.10). The four inputs, ‘a’, ‘b’, ‘c’, ‘d’, and two outputs, ‘mix’ and
‘invmix’, all represent single bytes. ‘a’, ‘b’, ‘c’, ‘d’ are the four bytes in a column of the
State with ascending row numbers. ‘Mix’ and ‘invmix’ are the outcomes of
applying MixColumns and InvMixColumns transformation to the inputs, respectively.
The block diagram for applying MixColumns and InvMixColumns to the bytes in other
rows can be obtained by exchanging the position of the input bytes according to equations
(2.22) and (2.24).

Figure 4–12 shows the diagram of applying MixColumns and InvMixColumns
transformations to one column of the State. Each of the JointMix blocks consists of the
diagram in Figure 4–11. ‘Mixword’ is the output of applying the MixColumns
transformation to the ‘inword’, and ‘invword’ is the output of applying the
InvMixColumns transformation to the ‘inword’. The ‘outword’ gets the value of
‘mixword’ when ‘enc’ = ‘1’, which indicates encryption mode, and gets the value of
‘invword’ otherwise.

Figure 4–11: Joint implementation of the MixColumns and the InvMixColumns

transformations (bytes in the first row of the State)

 64

Figure 4–12: Joint implementation of the MixColumns and the InvMixColumns

transformations (one column in the State)

4.3.3. Resource Sharing of Generating Roundkeys in Encryption and Decryption

In the applications with limited area, generating roundkeys on the fly is a better choice.
Paper [33] proposed an efficient architecture which can generate roundkey(i + 1) from
roundkey(i) and vice versa. This architecture is illustrated in Figure 4–13.

In Figure 4–13, each of the ‘roundkey’ and the ‘next-roundkey’ consist of four words.
Assuming the ‘roundkey’ is expressed by four words as (w4i, w4i + 1, w4i + 2, w4i + 3), the 4
sets of XOR gates from left to right get w4i, w4i + 1, w4i + 2, and w4i + 3 as one of the inputs
from the ‘roundkey’ bus, respectively. The RotSub block in Figure 4–13, which per-
forms RotWord followed by SubBytes transformation, is made up of 4 S-boxes. Since
all the lower bytes of the round constant Rcon are zeros, the step of adding round constant
only needs to be performed on the most significant byte. Meanwhile, Rcon(i+1) equals
{02}Rcon(i) (1 ≤ i < Nr – 1).

Figure 4–13: Joint implementation of Key Expansion in encryptor and decryptor.

 65

Rcon(i+1) can also be generated on the fly from the stored Rcon(1) = {01}. When ‘enc’ is
‘1’, which stands for encryption mode, w4i + 3 is loaded into the RotSub block, after the
output of RotSub block was XORed with Rcon(i) and w4i, w4(i + 1) is generated at the
output of the first XOR gate on the left. Consequently, w4(i + 1) + 1, w4(i + 1) + 2, and w4(i + 1) + 3 are
generated one by one as the updated data propagates through each multiplexer from left to
right. When ‘enc’ is ‘0’, w4i + 3 ⊕ w4i + 2 = w4(i – 1) + 3 (0 < i ≤ Nr) is loaded into the RotSub
block, after the output of RotSub is XORed with Rcon(i),a temporary value
temp = Sub- Word(RotWord(w4(i – 1) + 3)) ⊕ Rcon(i) is fed back to the leftmost XOR
gate in Figure 4–13. w4(i – 1) = w4i ⊕ temp is generated after an XOR gate delay. As the
updated data propagates through each of the multiplexers, w4(i – 1) + 1, w4(i – 1) + 2, and w4(i – 1) + 3

are generated in a sequence.

 66

C h a p t e r 5

SUBBYTES TRANSFORMATION OPTIM IZATION
METHODS

Modern symmetric ciphers require non-linear functions in order to defend against
linear cryptanalysis. Substitution is a popular function for introducing non-linearity. A
substitution function is commonly referred to as S-box and can be defined on basis of
arithmetic operations or as an arbitrary mapping. Different cipher algorithms also use
different numbers of S-boxes, e.g. DES uses eight S-boxes which map six to four bits,
while AES uses a single S-box which is a bijective mapping from eight to eight bits.

The AES algorithm makes use of its S-box in the SubBytes round transformation as
well as in the key expansion. From a mathematical point of view, the AES S-box is
defined as an inversion in the finite field GF(28) with a specific reduction polynomial,
followed by an affine transformation. The inverse S-box, which is required for the
InvSubBytes round transformation for decryption, is simply the inverse of the affine
transformation, followed by an inversion in GF(28) as described in section 2.5.1. The
finite field inversion is the only non-linear operation of the AES algorithm. Since there
are many design options for the S-box in hardware, it is challenging to find an optimal
implementation for a particular purpose. On the one hand, the main criterion for high-
speed implementations is a short critical path, which allows reaching high clock
frequencies. On the other hand, S-box implementations for embedded devices call for
small silicon area and low power consumption. Several hardware implementations of the
nonlinear step are possible, and there is no evident best general solution. We could exploit
the particular features of the ASIC technology library or FPGA platform to limit area
occupation for the S-box component, which is critical to the success of the
implementation.

Because the S-box is based on an operation of inversion in the finite field GF(28), we
can propose different architectures. A broad classification divides all the possible
implementations in two main categories: serial architectures and parallel architectures.
While it is true that serial architectures could lead to compact circuits, in the following,
we will focus on parallel ones, assuming that the dedicated round logic computes one
round of the algorithm in one clock cycle with 16 S-boxes instantiated, one per each State
byte. Even if this is not the case, we can pipeline a completely combinatorial
implementation by inserting registers to obtain an enhanced throughput, multi-cycle
architecture. Section 4.1 shows that such pipelined combinatorial architectures tend to be
very efficient in terms of both area requirements and delay when mapped to commercial
FPGA units.

In many AES implementations two sub-steps required in the SubBytes transformation
are typically combined into a single lookup table. The table size is 16 by 16 with the
content 8 bits in length. The ROM size of 256×8 bit is not big for current technology and
can be implemented in a fairly simple manner with modern design tools. The ROM design
will achieve a high speed S-box and we will use it in the design of the optimized speed

 67

AES. However when the area is restricted or a ROM cannot be incorporated, the inversion
hardware becomes necessary. Within this scenario, the efficient S-box implementation is
the major concern. The affine transformation however requires small number of gates and
introduces small delays.

Several techniques for S-box computation have been developed. These are, for
instances:

1) The mentioned above table look up where step 2 is usually combined to be a single
table.

2) Synthesis and optimized logic function of S-box using CAD tools.
3) Compute the inversion of element in GF(28) and optimize the logic functions.

 In the computation of element inversion in GF(2k) one can use either extended Euclid
algorithm [43, 44] or composite field technique [38, 45, 46, 47, 48]. The use of composite
field in the S-box computation has been reported in literatures [38, 47, 48]. Rudra et al.
[47, 49] mapped all the operation (except ShiftRows) into the composite field of GF(24)2

 .
Multiplication, squaring and inversion are borrowed form those detailed in [50]. Morioka
and Satoh [48] also have exploited the used of composite field in the design of a low
power S-box transform. Elements in GF(28) are mapped to those defined in GF((22)2)2.
Multiplication and inversion are optimized in the ground field. Rijnmen [38] also
mentioned the computation of inversion in GF(24).

In our design for optimized speed AES we will use the ROM design for the S-box
which is considered the most efficient approach and achieves the least delay with
comparison with other designs. In this chapter we will explain an area efficient approach
which we will use in the design of the S-box for optimized area AES. This approach is
cited in the paper An Architecture for S-Box Computation in the AES [51]. This approach
depends on the mapping of the Elements in GF(28) to those defined in GF((22)2)2.
Multiplication and inversion are optimized in the ground field.

5.1. An Efficient S-box Computation

In the case of Rijndael, the field polynomial m(x)= x8+x4+x3+x+1 has been chosen. It is
an irreducible polynomial in GF(28) but not a primitive one. We first have to map
elements in GF(2k) into GF(2n)m where k=mn. A method elaborated in [47] is again
summarized here.

1. Let α be a primitive element of GF(2m)n, and γ be a primitive element of GF(2k) ,
such that field isomorphism holds.

2. Map αi to γi for iЄ{0,...,(2k−1)}.
3. Check whether ∀ i Є{0,...,(2k −1)} , if αr=αi+1 then γr=γi+1 . If so, we then have the

required mapping, otherwise we have to search for the next primitive element.
4. The inverse mapping can be easily found by matrix inversion, i.e., if [T] is a

mapping matrix, [T]-1 is an inverse mapping matrix.

With above procedure, we select the polynomial p(x)= x2+x+β14 where β14 denotes the
element in GF(24) of which I(x)=x4 +x+1 is the primitive irreducible polynomial. As a

 68

result, the transform matrices that map an element in GF(28) to the corresponding element
in the composite field GF(24)2 or vice versa are obtained as follow.

1 0 1 1 1 0 1 1
0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1
0 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.1)

And

1

1 0 0 0 1 0 1 0
0 0 0 0 1 1 0 1
0 1 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 1 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 1 1 1 0 1 1 1
0 0 1 0 0 1 0 0

T −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.2)

The upper–left element in the above matrices denotes the least significant bit. An
Advantage of mapping elements form GF(28) to GF((24)2) is the simpler multiplicative
inverse computation since inversion is performed in GF(24) . For such a small field size,
inversion using either the direct truth-table mapping or table look up consumes small area.
Moreover, in Rijndael system data are treated naturally in byte format. Let data (byte) be
expressed as

{ }A bc bx c= = + , the inversion of A , say
-1 { }B A pq px q= = = + . For the field polynomial

2()p x x Cx D= + + , One can have
-1 p b= Δ (5.3)

-1()q Cb c= ⊕ Δ (5.4)

 Where

2()c Cb c b DΔ = ⊕ ⊕ (5.5)

 Or

2 2bcC c b DΔ = ⊕ ⊕ (5.6)

For GF((2n)2) , the polynomial in the form of p(x) = x2 + x +λ always exists [45]. As
such, C and D can be set to {1} and {9} (in GF(24)) respectively. Fixed-coefficient
multiplication (i.e., b2D) as well as squaring units is relatively simple according to their
small field size. The multiplications required in computing equations (5.3), (5.4) and (5.5)
can be done straight away in GF(24) or can be further simplified by making use of
composite field GF((22)2) [48]. Borrowed form [45], in our implementation, we use

 69

polynomials p(x)=x2+x+σ2 and I(x)= x2 +x+1 for the computations in GF((22)2) and
GF(22) respectively.

In GF((22)2), let 0 1()U x u u x= + and 0 1() V x v v x= + , then

mod () 0 1() () () p xZ x U x V x z z x= = + (5.7)
Where

2

0 0 0 1 1z u v u vσ= ⊕ (5.8)

 1 0 1 1 0 1 1z u v u v u v= ⊕ ⊕ (5.9)
 Where ui ,vi ,σ2 Є GF(22).

In the (forward) SubBytes transformation, the inversion is followed by the affine
transformation given previously in Section 2.5.1. This step can be combined with the
inverse mapping and a single logic block is obtained. The resulted matrix is noted in
equation (5.10). Regardless of the hardware reusable, the resulted matrix cannot be shared
by the inverse SubBytes transformation.

1

0 1 0 0 1 0 0 1
1 0 0 1 1 0 1 1
0 1 1 1 1 1 0 1
0 1 0 1 1 1 0 0
1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 0 0 1 1 1 1 1

T D−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.10)

In the decryption process, the inverse affine transform can be expressed as:

{ } 8mod(1)() 4 () ()xb x A d x c x
+

= ⊕ (5.11)

Where c(x)={05}=x2+1. This process has to be performed in prior to the (inverse)
SubBytes transformation. Similarly, the affine transformation can be merged with the
(forward) mapping. The resulted matrix noted in equation (5.12) is obtained. The
combined matrices given in equations (5.10) and (5.12) are individual. The combined
scheme can result in a slightly compact hardware but not applicable to the restricted
hardware size application (such as in smart card) where a single inversion circuit is
utilized by the ciphering and the deciphering procedures.

0 1 0 0 0 1 0 0
0 0 1 1 0 1 1 0
0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 1
1 1 1 0 1 1 1 1
0 0 0 1 1 1 1 0
1 0 0 0 1 1 1 0
0 1 1 0 0 0 1 1

TB

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.12)

 70

5.2. Bit-parallel architecture of standard and composite field operations

In this section we will illustrate the bit architecture for the operations described in
Section 5.1 [51].

5.2.1. GF(28) Computations

1. Inversion in GF((24)2) ; p(x)=x2+x+β14 b,c,p,q are elements in GF(24)
A(x)=bx+c ; B(x)=A−1(x)=px+q
p=bΔ−1 , q =(b ⊕ c)Δ−1; Δ=β14b2 ⊕ bc ⊕ c2 .

5.2.2. GF(24) Computations

1. Multiplication in GF(24) , I(x)=x4 +x+1 To compute C(x)= A(x)B(x)mod I(x) where

() () ()

() ()

4

0 0 0 3 1 2 2 1 3

1 1 0 0 1 3 1 3 2 2 2 2 3 1 3

1 0 0 3 1 2 3 2 1 2 3

2 2 0 1 1 0 2 3 2 3 3 2 3

2 0 1 1 0 3 2 2 3 3

3 3 0 2 1 1 2 0 3 3 3

3 0 2 1

, , (2)i i ia b c GF
c a b a b a b a b
c a b a b a b a b a b a b a b

a b a a b a a b a a b
c a b a b a b a b a b a b

a b a b a a b a a b
c a b a b a b a b a b

a b a b a

∈
= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ()1 2 0 3 3b a a b⊕ ⊕

2. Multiplication in the composite field GF((22)2) ,where p(x)=x2+x+σ2
U(x) = u0+ u1x , V(x) = v0+ v1x and Z(x) =U(x)V(x)mod p(x) = z0+z1x , where
zi ,ui ,vi Є GF(22).
z0=u0v0 ⊕ σ2 u1v1 and z1=u0v1 ⊕ u1v0 ⊕ u1v1

3. Squaring; B(x) = A(x)A(x)mod I(x) , I(x)=x4 +x+1
 b0=(a0 ⊕ a2) ,b1=a2,b2=(a1 ⊕ a3),b3=a3

4. Fixed-coefficient multiplication; To compute C(x) = β14B(x)mod I(x) where
 I(x) =x4+ x +1 c0=(b0 ⊕ b1),c1=b2,c2=b3,c3=b0

5. To compute C(x) = A2(x)β14mod I(x) ; Combine 3) and 4) above
 c0=a0 ,c1=(a1 ⊕ a3),c2=a3,c3=(a0 ⊕ a2)

6. Inversion; C(x) = A−1(x) , I(x)=x4 +x+1

() ()
() () ()

()
() ()

0 2 3 2 0 1 1 2 0 3

1 0 1 2 1 2 3 3 0 1

2 0 2 3 0 1 0 2 3

3 1 0 2 3 1 0 2 3

c a a a a a a a a a

c a a a a a a a a a

c a a a a a a a a

c a a a a a a a a

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

5.2.3. GF(22) Computations, I(x) = x2 + x + 1

1. Multiplication in GF(22) To compute F(x) = g(x)h(x)mod I(x)

 71

 0 0 0 1 1

1 0 1 1 0 1 1

f g h g h
f g h g h g h

= ⊕
= ⊕ ⊕

2. Fixed-coefficient multiplication;
Z(x) = σ2U(x)mod I(x) z0=(u0 ⊕ u1),z1=u0

3. Squaring; C(x) = A2(x)mod I(x)
c0=(a0 ⊕ a1),c1=a1

4. Inversion; C(x) = A−1(x)
c0=(a0 ⊕ a1),c1=a1

5.3. IMPLEMENTATIONS

The implementation of the SubBytes transformation formulated earlier in section 5.1 is
detailed in this section.

Gate count and delay time of the designs with different architectures are investigated.
Many related mathematic equations are given as appendix for convenience of referring.
The inversion of elements in the S-box operation has been reported of its most power
consuming compared to others (i.e., 75% [48]). We thus look at this operation in quite
details. The S-box computation can be divided into 3 blocks as shown in Figure 5–1-a.
The affine transform and the inverse mapping could be combined as mentioned earlier.

Figure 5–1: S-box Computation and Inversion in GF((24)2)

Shown in Figure 5–1-b, the inversion in GF(28) are performed in the composite field,
GF((24)2) . Three GP multiplications, two squaring, a fixed-coefficient multiplication and
an inversion are involved. There are slight differences of the implementation of Figure 5–
1. One can choose either equation (5.5) or (5.6). The differences are gate count, wiring
complexity and critical data path. We chose (5.6) because of its smaller delays compared
to that offered by (5.5). It also should be noted that the operation b2β14 could be combined
into a single logic block (see Section 5.2.2).

A direct implementation of a general purpose multiplier (see Section 5.2.2) can result
in a complexity of 16 AND and 10 OR, and with the delay time of 3τ.

 72

Figure 5–2: Multiplication in GF((24)2)

The same multiplier can be also implemented using the composite field technique. This
is shown in Figure 5–2 (see also Section 5.2.2). The complexity is 16 AND, 14 OR, and
with the delay time of 3τ. Similarly the inversion in GF(24) can be implemented directly
as given in (see Section 5.2.2)) [29]. The complexity is 11 AND, 11 OR, 5 INV, and with
the delay time of 3τ. This inversion can be implemented in the composite field GF((22)2) .
The similar scheme as that shown in Figure 5–1-b is reapplied. The complexity is 12
AND, 9 OR and with the delay time of 4τ. Regardless the inserted delays, the above
discussed inversion in GF(28) is summarized in Table 5–1 below.

Table 5–1: Complexity of GF(24)2) inversion

The field mapping denoted by equations (5.1) and (5.2) above can be easily
implemented with about 16 XORs as shown in Figure 5–3. If one needs the combined
mapping noted by equations (5.10) and (5.12) can be implemented similarly.

 73

Figure 5–3: Field Mapping (a) and Inverse Mapping (b)

5.4. Comparison between difference S-box Implementations

Table 5–2 shows a performance comparison of various S-Boxes in 0.18_m ASIC
libraries including our used method [48].

Table 5–2: Comparison of various S-Box architectures (0.18 _m 1.8 V CMOS
standard cell, 1 gate = 2 way-NAND)

 Delay (ns) Size (gate)
Itoh and Tsujii [14] 4.11 1,540

PPRM (1-stage) 1.32 2,242
Twisted-BDD [17] 0.66 1,977

BDD 0.96 857
Table look-up 0.91 1,706

Composite Field 3.01 305
SOP (1-stage) 0.97 1,142
Satoh Morioka 1.86 701

As shown in the above table the S-box designed with composite field architecture has
the minimum number of gates, but it also has a large delay when compared with other
methods, so we will choose it in the design of the optimized area AES.

 74

C h a p t e r 6

Hardware Implementation of AES

Hardware implementations of cryptographic algorithms have a long history.
Traditionally, algorithms were implemented in hardware to achieve a higher speed than
with implementations in software. The requirements of contemporary and future
Applications however, demand often other properties of hardware implementations.

Today we can identify two application scenarios where hardware implementations are
advantageous over software implementations. Firstly, these are high-speed applications
where a cryptographic co-processor performs the cryptographic operations in order to
relieve the rest of the system. Secondly, these are applications where low power and low
area requirements are stringent. In both application scenarios, the secure storage of keys is
important.

The AES has been the topic of much research to find suitable architectures for its
hardware implementation. Architectural choices for a given application are driven by the
system requirements in terms of speed and the resources consumed. This can simply be
viewed as throughput and area; however, latency may also be important as may the
cipher’s mode of operation. The FIPS-197 specification details a number of modes of
operation for the cipher, for example, the simplest is the Electronic Code Book (ECB).
Additional resilience to attack can be gained by using one of the feedback modes, for
example, Output Feed Back (OFB) mode unfortunately such modes also limit the
effectiveness of pipelining.

6.1. Introduction to Digital VLSI Design on FPGAs
In this section we will give a brief introduction to Digital VLSI design cycle using HDL
(Hardware Description Languages) and FPGAs (Field Programmable Gate Arrays)

6.1.1. Introduction to Digital VLSI Design

Traditionally, digital design was a manual process of designing and capturing circuits
using schematic entry tools. This process has many disadvantages and is rapidly replaced
by new methods [52].

System designers are always competing to build cost-effective products as fast as
possible in highly competitive environment. In order to achieve this, they are turning to
using top-down design methodologies that include using hardware description languages
and synthesis, in addition to just the more traditional process of simulation. A product in
this instance is any electronic equipment containing ASICs or FPGAs.

In recent years, designers have increasingly adopted top down design methodologies
even though it takes them away from logic and transistor level design to abstract
programming. The introduction of industry standard HDLs and commercially available

 75

synthesis tools have helped establish this revolutionary design methodology. Some of the
advantages are:

• Increased productivity yields shorter development cycles with more product
features and reduced time to market.

• Reduced non-recurring engineering costs.
• Design reuse is enabled.
• Increased flexibility to design changes.
• Faster exploration of alternative architectures and technology libraries.
• Enables use of synthesis to rapidly sweep the design space of area and timing, and

to automatically generate testable circuits.
• Better and easier design auditing and verification.

6.1.2. Top down design methodology

In an ideal word, a true top-down system level design methodology would mean
describing a complete system at an abstract level using a HDL and the use of automated
tools, for example, partitioners and synthesizers. This would drive the abstract level
description to implement on ASICs or FPGAs.

A top down design methodology takes the HDL model of hardware, written at a high
level of behavioral abstraction (system or algorithmic) Down through intermediate levels,
to a low (gate or transistor) level as shown in Figure 6–1.

Figure 6–1: Behavioral level of abstraction pyramid

The term behavior represents the behavior of intended hardware and its independent of
the level of abstraction by which it is modeled. A design represented at the gate level still
represents the behavior of hardware intent. As hardware models are translated to
progressively lower levels they become more complex and contain more structural detail.
The benefit of modeling hardware at higher levels of behavioral abstraction is that
designers are not overwhelmed with large amount of unnecessary details and complexity
of design task is reduced. Figure 6–2 shows how the different behavioral levels of

 76

abstraction overlap between the design-domains of pure abstraction, structural
decomposition and physical implementation.

Figure 6–2: Design domain for different levels of design abstraction

6.1.3. Introduction to FPGA technology

The use of FPGA has been expanding from its traditional role in prototyping to
mainstream production. This change is being driven by commercial pressures to reduce
design cost, risk and achieve a faster time to market. Advances in technology have
resulted in mask programmed mass produced versions of FPGA fabrics being offered by
the leading manufacturers which, for some applications, remove the necessity to move
prototype designs from FPGA to ASIC whilst still achieving a low unit cost [53].

The Xilinx Virtex family is the most used FPGA series in academia concerning
cryptographic implementations. This section will give some more detailed description,
about FPGA in general and the chips used in the cited contributions.

The original 2.5-Volt Virtex family was introduced in 1998 offering features, like
Block RAM, Distributed RAM and High-speed external memory interfaces, Delay-
Locked Loops (DLLs), and SelectI/O. The Virtex-E family, introduced in 1999, delivers
more RAM, more DLLs, the SelectLink technology and high speed differential signaling.
Virtex-4 and Virtex-5 FPGAs are the high end chips offered by Xilinx.

One of the biggest architectural differences between FPGAs and CPLDs is that FPGAs
have an array of many small logic blocks with vast interconnection networks, while
Complex Logic Device (CPLDs) have a few large logic block based on PALs, with
smaller interconnection networks. Hence, FPGAs exist of three main components:
Configurable Logic Blocks (CLBs), interconnections, and I/O blocks (see Figure 6–3).

 77

Figure 6–3: Structure of the Virtex FPGA

FPGA technology is usually based on SRAM, flash, EEPROM or anti-fuse
interconnections. The Virtex family is based on SRAM technology. The I/O blocks of
FPGAs are very similar to the I/O pads in an ASIC and act as buffers to the outside world.
The CLBs are the core logic element in an FPGA. The main block in a Virtex CLBs is the
logic cell (LC). Each Virtex CLB contains of four LCs, organized in two similar slices.
An LC includes a 4-input function generator, carry logic, and a storage element. The
output from the function generator in each LC drives both the CLB output and the D input
of the flip-flop. The slice includes 4-input look-up tables (LUTs), which are the function
generators of the CLB. Each LUT can provide a 16 x 1-bit synchronous RAM and the two
LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous
RAM, or a 16x1-bit dual-port synchronous RAM. The F5 multiplexer provides the ability
to combine the function generator outputs, either to a function generator (implementing
any 5 input function), to a 4:1 multiplexer, or to a selected functions of up to nine inputs.
F6 multiplexer combines the outputs of all four function generators in the CLB by
selecting one of the F5 multiplexer outputs. This permits the implementation of any 6-
input function, an 8:1 multiplexer, or selected functions of up to 19 inputs. The XOR gate
provides the possibility to implement a 1-bit full adder in one LC and the AND gate
allows a efficient multiplier implementation.

 78

Moreover, large block of RAM memories which are organized in columns are
provided. Virtex devices have two columns that extend the full height of the chip. Each
memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high
contains 16 memory blocks per column, and a total of 32 blocks.

6.2. Hardware Basic Decisions and Considerations

AES algorithm has many architectures, key sizes and modes of operation. In our
implementation of the algorithm we have make some decisions and considerations based
on the optimization goal (Area/ Speed). In this section we state the decisions and
considerations which we will use in our implementation for Optimized Area/ Speed AES:

• We only consider 128-bits key size, which means that we will have only ten Enc/
Dec rounds.

• We make separate implementations for both encryption and decryption modules
based on that many applications have a separate transmitter and receiver.

• In our Implementation of the AES algorithm with a small area we will select the
basic reference architecture (see Section 4.1.1) which needs the implementation of
one round only and re-use it to complete the ten encryption rounds, we also
designed the Encryptor/ Decryptor to complete one encryption round in one clock
cycle so the output of the Encryptor/ Decryptor will be valid after ten clock cycles
from the data entrance.

• In our Implementation of the AES algorithm with a high speed we will select the
pipelined architecture with (K=Nr=10) ten rounds (see Section 4.1.1). This design
will allow to us to update the input data each clock cycle but it will increase the
area about ten times larger than optimized area AES.

• Another basic architecture decision we had make was the key schedule architecture.
There are two ways for generating the round keys for encryption, either by
generating all the sub-keys beforehand and storing them in a buffer, or generating
all the sub-keys on the fly in parallel with the encryption module. Since buffer
storage could take up substantial amount of space, we decided to generate the sub-
keys on the fly during encryption. For the encryptor we implement the hardware
required to generate one set of sub-key and re-use in the calculation of other the
sub-keys, and at the same time also use one clock cycle for one sub-key generation.
 For the decryptor we must generate the last sub-key first to use it in the first
decipher round, so we couldn’t use the same key expansion architecture used with
cipher and we must select one of the other architectures either by generation of all
sub-keys beforehand and storing them in a RAM, or by generation of all sub-keys
using pipelined architecture.

• Another decision we had make was about the mode of operation. There are many
modes of operation of the AES block cipher, and this modes are classified into two
major classes: feedback and non-feedback modes (see Section 2.2.1), in our design
we will concern in non feedback mode of operation ECB (Electronic code book)

• Our hardware designs have been encoded in VHDL’93, and targeted on a Xilinx
Virtex 4 FPGA. We use Xilinx ISE 7.1i and modelsim programs for simulation,
synthesis, place and route for my designs.

 79

6.3. Optimized Area AES Encryptor/ Decryptor

For optimized area AES our goal is to implement AES encryptor/ decryptor with a
small area which it could be used in smart cards and other applications which required a
high security with minimum resources. In this section we will illustrate the hardware
architecture of cipher, decipher and key expansion units and then we will present my
simulation, synthesis and implementation results.

6.3.1. Hardware Architecture

6.3.1.1. Cipher/ decipher Hardware Architecture

As shown in Figure 6–4 we use the basic architecture for the Cipher/ Decipher Module
which consists of:

1. A multiplexer which is used to
choose between the plaintext and the
data output from the cipher round.
In our design the multiplexer
selector is controlled by a counter to
allow plaintext to pass each ten
clock cycles and allows the output
data of cipher round to pass during
this ten clock cycles.

2. 128-bits register which is used to
hold the output data of the
multiplexer to use it as input to the
cipher round.

3. Cipher round which is used to make
one round of encryption and output
cipher data after ten clock cycles.

Figure 6–4: Optimized area cipher/

decipher Architecture

6.3.1.2. Key Expansion Hardware Architecture
The cipher key expansion module

shown in Figure 6–5 has the same
architecture as cipher module, and this
architecture is used to generate four
words (only one sub-key) each clock
cycle in parallel with cipher. This
architecture of key expansion module has
the ability of changing the encryption
key each ten clock cycles (which means
that we can encrypt each Plaintext with a
different key) and this is consider an
advantage when compared with the other
architecture which generates all sub-keys
and stores them in RAM.

Figure 6–5: Cipher key expansion

architecture

 80

The decipher key expansion module shown in Figure 6–6 uses one key expansion
round and Nr 128 bits registers (RAM), and it could be used for both encryption and
decryption modules if we want to make resources sharing in case of design the same chip
for encryption and decryption. Also this architecture could be used for other architectures
of the AES such as pipelined or loop unrolled architecture.

Figure 6–6: Decipher key expansion architecture

6.3.1.3. Cipher/ Decipher Round Architecture

AES cipher round can be divided into four basic operation blocks which operates on
array of bytes, organized as a 4×4 matrix called the state as mentioned before. Four basic
steps, called layers consist of the SubBytes transformation, the ShiftRows transformation,
the MixColumns transformation, and AddRoundKey (see Section 2.5) as shown in Figure
 6–7-a.

1. The SubBytes transformation: Non-linear byte substitution which is composed of
multiplicative inverse and affine transformation. We use the composite field
method described in Section 5.1 in our implementation of this transformation which
will save the area but it will increase the delay.

2. The ShiftRows transformation: Linear diffusion process, operating on individual
rows. Depending on the row location, offset of left shift varies from zero to three
bytes.

3. The MixColumns transformation: Matrix multiplication over GF (28). Column
vector is multiplied with a fixed matrix where the bytes are treated as a polynomials
rather than numbers. We use the method of substructure sharing described in
Section 4.2.3 in our implementation for this transformation which has the
advantages of low area and high speed.

4. AddRoundKey: Simple byte XOR operation with the round key.

 81

These four layer steps describe one round of AES. A 128 bit round sub-key, used in
AddRoundKey operation, is generated by the key schedule.

Excluding the first and the last round, AES encryption round executes nine iterations.
First round of the encryption step performs XOR with the original key and the last round
skips MixColumns layer.

All four layers described above have corresponding inverse operations such that the
decryption is simply the reverse order operations of these inverse transformations as
shown in Figure 6–7-b.

S u b B y t e s

S h i f t R o w s

M ix C o lu m n s

P la in T e x t

S u b - K e y

C ip h e r T e x t

a . C ip h e r R o u n d

I n v M ix C o lu m n s

I n v S h i f t R o w s

I n v S u b B y t e s

C ip h e r T e x t

b . D e c ip h e r R o u n d

S u b - K e y

P la in T e x t

A d d R o u n d
K e y

A d d R o u n d
K e y

Figure 6–7: a. Cipher Round, b. Decipher Round

6.3.1.4. Key Expansion Round Architecture
Key expansion Round can be divided into

the following operations which operates on
array of four words (see section 2.6) as
shown in Figure 6–8.

1. RotWord transformation: A simple rotate
operation which rotates the word one byte
to the right.

2. SubWord transformation: Each byte in the
word is substituted by the SubBytes
transformation.

3. XOR: Simple word XOR operation.

Figure 6–8: Key Expansion Round

Architecture

 Note that Rcon[i] are constants depend on the round number.

 82

6.3.2. Hardware Implementation Results

6.3.2.1. Encryptor/ decryptor Circuit

Figure 6–9 and Figure 6–10 shows the encryptor and decryptor top level entities and
Table 6–1 shows names, modes and functions of signals used in the design of optimized
area AES encryptor and decryptor

Figure 6–9: Encryptor Top level Entity

Figure 6–10: Decryptor Top level Entity

 83

Table 6–1: Encryptor/ decryptor signals names and functions
Signal Name Type Signal Function

a. Encryptor/ Decryptor
Input Data
(127:0) Input 128-bits data input to cipher (plaintext) or to

decipher (ciphertext)
Input Key
(127: 0) Input 128-bits input key used in generation of sub key

words
Reset Input Active high asynchronous reset signal

Start Input

Active high asynchronous start signal used to start
the cipher/ decipher key expansion unit which will
be used in the interface of the encryptor/ decryptor
and external peripheral

Clock Input Positive edge clock for the encryptor/ decryptor
Output Data
(127:0) Output 128-bits data output of cipher (ciphertext) or of

decipher (plaintext)

Enc Done,
Dec done Output

Active high output signal when the output of the
encryptor or the decryptor is ready which will be
used in the interface of the encryptor/ decryptor
and external peripheral

SubWord
(i:i+3) Internal

Four sub words used in encryptor/ decryptor round
which changes each clock cycle where i depends
on the present round number

Sub Word
Ready Internal Active high signal acts as a start signal for the

cipher/ decipher unit
b. Decryptor

Sub Word
(0:43) Internal All the 44 sub words output of the decipher key

expansion unit

Sub Words
Ready Internal

Active high signal indicates that all key sub words
are ready which will be used as a start signal to the
control counter

Enable Internal
An enable signal to the sub words Multiplexer
which will be used to start output the four sub
words which will be used in the decipher unit.

6.3.2.2. Functional Simulation Results

Figure 6–11and Figure 6–12 shows the functional simulation results for the optimized
area AES encryptor and decryptor. As shown in Figure 6–11 we initially apply the AES
test vector data to the input and key, we got the correct output data (as test vector output)
[] after Nr (10) clock cycles as mentioned in section 6.2. Then we apply a random input
data changes each ten clock cycles and we found that the output data responds to the input
change which means that the encryption and decryption process is done one time each Nr
(10) clock cycles. The decryptor test shown in Figure 6–12 is similar to the encryptor test
with one difference in the delay between input and output (2Nr (20) clock cycles) which
consists of the combination of the sub key words generation delay (Nr (10) clock cycles)
and the decryption required time (Nr (10) clock cycles).

 84

Figure 6–11: Behavioral simulation of optimized area AES Encryptor

Figure 6–12: Behavioral simulation of optimized area AES Decryptor

6.3.2.3. Hardware Implementation Results

Table 6–2 shows the hardware implementation results of the optimized area AES
cipher and decipher internal transformations. It is clear that SubBytes transformation and
its inverse consume about (75%-80%) of the area and also they have the largest delay.
Also we can see that ShiftRows transformation and it inverse have no area or delay. One
can see that the routing delay increase as the levels of logic increase (number of gates in
the critical path) and this delay may becomes larger than the logic gates delay.

Table 6–2: Implementation results for separate cipher/ decipher transformations
Transformation Number of gates Maximum Delay

a. Cipher Transformations

SubBytes (State)

XORs : 1192
 1-bit xor2 : 666
 1-bit xor3 : 264
 1-bit xor4 : 185
 1-bit xor5 : 68
 1-bit xor6 : 9

8.580ns
(2.086ns logic, 6.494ns route)
(24.3% logic, 75.7% route)
(Levels of Logic = 13)

ShiftRows (state) 0 0

 85

MixColumns (state)
XOR : 176
 1-bit xor2 : 160
 8-bit xor4 : 16

0.998ns
(0.469ns logic, 0.529ns route)
(47.0% logic, 53.0% route)
(Levels of Logic = 2)

AddRoundKey (state)
XORs : 16
 8-bit xor2 : 16

0.322ns
(0.322ns logic, 0.000ns route)
(100.0% logic, 0.0% route)
(Levels of Logic = 1)

b. Decipher Transformations

InvSubBytes (state)

XORs : 1130
 1-bit xor2 : 658
 1-bit xor3 : 209
 1-bit xor4 : 188
 1-bit xor5 : 65
 1-bit xor6 : 10

7.255ns
(1.792ns logic, 5.463ns route)
(24.7% logic, 75.3% route)
(Levels of Logic = 11)

InvShiftRows (state) 0 0

InvMixColumns (state)

XORs : 715
 1-bit xor2 : 619
 1-bit xor3 : 79
 1-bit xor4 : 1
 8-bit xor4 : 16

2.703ns
(0.910ns logic, 1.793ns route)
(33.7% logic, 66.3% route)
(Levels of Logic = 5)

AddRoundKey (state)
XORs : 16
 8-bit xor2 : 16

0.322ns
(0.322ns logic, 0.000ns route)
(100.0% logic, 0.0% route)
(Levels of Logic = 1)

Table 6–3 shows the FPGA device utilization and timing characteristics of the
optimized area AES Encryptor and Decryptor. It is clear that decryptor area is larger than
Encryptor which is mainly due to that Decipher Key Expansion unit have a large area
when compared to the Cipher Key Expansion unit and also that the decipher area is larger
than the cipher area.

Table 6–3: FPGA (4vlx60ff668-12) device utilization and timing characteristics of
optimized area AES

a. Encryptor

 Cipher Key
Expansion Cipher Encryptor

Number of Slices 452 out of 26624
1%

1151 out of 26624
4%

1468 out of 26624
5%

Number of Slice Flip-Flops 170 out of 53248
0%

290 out of 53248
0%

450 out of 53248
0%

Number of 4 inputs LUTs 856 out of 53248
1%

2194 out of 53248
4%

2799 out of 53248
5%

Minimum Period
(Maximum Frequency)

6.824ns
(146.547MHz)

7.774ns
(128.636MHz)

7.693ns
(129.989MHz)

Minimum input arrival time
before clock 3.251ns 3.694ns 3.697ns

Maximum output required
time after clock 4.163ns 3.921ns 3.921ns

b. Decryptor

 Decipher Key
Expansion Decipher Decryptor

 86

Number of Slices 1175 out of 26624
4%

2366 out of 26624
8%

2752 out of 26624
10%

Number of Slice Flip-Flops 1651 out of 53248
3%

443 out of 53248
0%

2055 out of 53248
3%

Number of 4 inputs LUTs 815 out of 53248
1%

4459 out of 53248
8%

4801 out of 53248
9%

Minimum Period
(Maximum Frequency)

7.007ns
 (142.709MHz)

7.972ns
(125.433MHz)

8.009ns
(124.863MHz)

Minimum input arrival time
before clock 3.851ns 3.654ns 3.750ns

Maximum output required
time after clock 4.007ns 3.921ns 3.921ns

We can calculate the throughput of the Encryptor/ Decryptor From equation (4.1)

 128 129.989 1.664
10

MHzEncryptorThroughput Gbps×
= =

 128 124.863 1.598
10

MHzDecryptorThroughput Gbps×
= =

6.4. Optimized Speed AES Encryptor/ Decryptor

For Optimized Speed AES our goal is to implement AES Encryptor/ Decryptor with a
high speed which it could be used in network routers and other applications which
required a high security with a high speed.

In this section i will illustrate the hardware architecture of cipher, decipher and key
expansion unit which i used in my design and then i will present my simulation, synthesis
and implementation results.

6.4.1. Hardware Architecture

6.4.1.1. Cipher/ decipher Hardware Architecture

We use the pipelined architecture with k=Nr=10 for the Cipher/ Decipher Module as
shown in Figure 6–13. Note that there is no multiplexer because we will not need for
feedback because we implement all the Cipher/ Decipher rounds.

6.4.1.2. Key Expansion Hardware Architecture

For both of encryptor and decryptor we will use the architecture shown in Figure 6–14
which is called on the fly architecture. This architecture consumes a large area but it has
the advantage of the possibility of changing the input key each clock cycle, which means
that we could update the key for each input data.

 87

Figure 6–13: Optimized Speed Cipher/

Decipher Architecture

Figure 6–14: Optimized speed Key

Expansion Architecture

6.4.1.3. Cipher/ Decipher Round Architecture

The Cipher/ Decipher round architecture will not differ from that used in the optimized
area AES (see Figure 6–7). The difference will be in the transformations implementation
methods. We will implement all transformations in the same methods like optimized area
AES except the SubBytes/ InvSubBytes Transformation which will be implemented using
the Look Up Table (ROM) method to decrease the delay.

6.4.1.4. Key Expansion Round Architecture

We will use the same architecture shown Figure 6–8 which is used in the optimized
area AES. We will implement the SubWord Transformation using the ROM method.

6.4.2. Hardware Implementation Results

6.4.2.1. Encryptor/ decryptor Circuit

Figure 6–15 shows the encryptor and decryptor top level entities which is similar to the
optimized area AES top level entity with some differences in internal signals(Sub Key
Words are 44 words and Sub Key Ready are ten signals one for each round). The signals
names and functions are shown in Table 6–1.

 88

Figure 6–15: Encryptor/ Decryptor top level entity

6.4.2.2. Functional Simulation Results

Figure 6–16 and Figure 6–17 shows the behavioral simulation results of the optimized
speed AES encryptor and decryptor. As shown in Figure 6–16 we initially apply the test
vector data and ensure that the output is correct, also we can see that we have Nr (10)
clock cycles delay between input and output data. After this we apply a random data each
clock cycle and we found that the output responds to the input data change. The decryptor
test shown in Figure 6–17 is similar to the encryptor test with one difference in the delay
between input and output (2Nr (20) clock cycles) which consists of the combination of the
sub key words generation delay (Nr (10) clock cycles) and the decryption required time
(Nr (10) clock cycles).

Figure 6–16: Behavioral simulation of optimized speed AES Encryptor

 89

Figure 6–17: Behavioral simulation of optimized time AES Decryptor

6.4.2.3. Hardware Implementation Results

As we mentioned before, all cipher/ decipher transformations will be same to the
optimized area AES (see Table 6–2) except the SubBytes/ InvSubBytes transformation.
Table 6–4 shows the implementation results of the optimized speed SubBytes and
InvSubBytes transformations.

Table 6–4: Optimized speed SubBytes and InvSubBytes implementation results
Transformation Number of gates Maximum Delay

SubBytes (State) #ROMs :16
#256x8-bit ROM :16

1.274ns
(1.274ns logic, 0.000ns route)

(100.0% logic, 0.0% route)
(Levels of Logic = 5)

InvSubBytes (state) #ROMs :16
#256x8-bit ROM :16

1.274ns
(1.274ns logic, 0.000ns route)

(100.0% logic, 0.0% route)
(Levels of Logic = 5)

Table 6–5 shows the FPGA device utilization and timing characteristics of the
optimized speed AES encryptor and decryptor. It is clear that the decryptor has a larger
area and delay than the encryptor because of the difference between the MixColumns and
InvMixColumns transformation

Table 6–5: FPGA (4vlx60ff668-12) device utilization and timing characteristics of
optimized speed AES

a. Encryptor

 Cipher Key
Expansion Cipher Encryptor

Number of Slices 4877 out of 26624
18%

15625 out of 26624
58%

18855 out of 26624
70%

Number of Slice Flip-Flops 4002 out of 53248
7%

8753 out of 53248
16%

9814 out of 53248
18%

Number of 4 inputs LUTs 7769 out of 53248
14%

23925 out of 53248
44%

31682 out of 53248
59%

Minimum Period 2.752ns 3.689ns 4.490ns

 90

(Maximum Frequency) (363.346MHz) (271.076MHz) (222.700MHz)

Minimum input arrival time
before clock 2.882ns 5.299ns 5.991ns

Maximum output required
time after clock 0.272ns 0.272ns 3.921ns

b. Decryptor

 Decipher Key
Expansion Decipher Decryptor

Number of Slices 4877 out of 26624
18%

16947 out of 26624
63%

20155 out of 26624
75%

Number of Slice Flip-Flops 4002 out of 53248
7%

8790 out of 53248
16%

9565 out of 53248
17%

Number of 4 inputs LUTs 7769 out of 53248
14%

29313 out of 53248
55%

36369 out of 53248
68%

Minimum Period
(Maximum Frequency)

2.752ns
(363.346MHz)

4.748ns
(210.604MHz)

5.543ns
(180.414MHz)

Minimum input arrival time
before clock 2.882ns 6.682ns 6.364ns

Maximum output required
time after clock 0.272ns 0.272ns 3.921ns

We can calculate the throughput of the Encryptor/ Decryptor From equation (3.1)

 128 222.7 28.51
1

MHzEncryptorThroughput Gbps×
= =

 128 180.414 23.09
1

MHzDecryptorThroughput Gbps×
= =

6.5. Comparison between Hardware Implementations of AES

In this section we will first introduce a comparison between our optimized area and
optimized speed AES followed by a comparison between our hardware implementation
and other previous implementations for the AES on FPGAs.

6.5.1. Comparison between Optimized Area and Optimized Speed AES

We will compare between the optimized area and optimized speed from the area and
delay points of view. Taking into consideration that we synthesis both of optimized area
and optimized speed on the same FPGA, from Table 6–3 and Table 6–5 we can
summarize the differences in the following points:

• Area: the ratio between the device utilization in the optimized area (5%, 10%)
and optimized speed (70%, 75%) AES is (14, 8) for the encryptor and decryptor
consequently. This large difference in area is mainly due to the difference in the
used hardware architectures, and secondly is due to the difference between
algorithm implementation methods. The difference between the encryptor and
decryptor for each approach is mainly due to the difference in the used key

 91

expansion hardware architecture, and secondly is due to the difference between
direct and inverse transformations.

• Clock Frequency: The optimized area maximum frequency is (129.989,
124.863 MHz) for the encryptor and decryptor consequently, while the
optimized speed maximum frequency is (222.7, 180.414 MHz) for the encryptor
and decryptor consequently. The difference between the maximum frequencies
of the two approaches is due to difference between algorithm implementation
methods. The difference between the encryptor and decryptor maximum
frequencies for each approach is due to the difference between direct and
inverse transformations.

• Throughput: The optimized area throughput is (1.664, 1.598 Gbps) for the
encryptor and decryptor consequently, while the optimized speed throughput is
(28.51, 23.09 Gbps) for the encryptor and decryptor consequently. The
difference between the two approaches throughput is due to difference between
the used hardware architectures. The difference between the encryptor and
decryptor throughput for each approach is due to the difference between direct
and inverse transformations.

6.5.2. Comparison of some Related Work for FPGAs

The architecture of an AES implementation mainly defines the required hardware
resources on an FPGA. Additionally, the used synthesis tool and the target device
influence this result.

Table 6–6 gives an overview of existing FPGA solutions. Because of the different
FPGAs, most of the use Xilinx FPGAs, the values have to be seen as a relative
comparison of resource requirements and data throughput [54].

Table 6–6: Comparison between difference FPGA implementations of AES
Authors LUTs Block RAMs Throughput

[Gbps]
Chodowiec 222 3 0.166
Chodowiec 12,600 80 12.16
Chodowiec 2,057 8 1.265
Chodowiec 2,507 0 0.414
Hodjat 9,446 0 21.64
Hodjat 5,177 84 21.54
McLoone 2,222 100 7.0
Pramstaller 1,125 0 0.215
Rouvroy 146 3 0.358
Saggese 446 10 1.0
Saggese 648 10 1.82
Saggese 2,778 100 8.9
Saggese 5,810 100 20.3
Standaert 1,769 0 2.085
Standaert 15,112 0 18.560

 92

Wang 1,857 0 1.604
Zambreno 387 10 1.41
Zambreno 1,254 20 4.44
Zambreno 2,206 50 10.88
Zambreno 3,766 100 22.93
Zambreno] 16,938 0 23.57
Zhang 9,406 0 11.965
Zhang] 11,022 0 21.556
Our optimized area
encryptor

1468 0 1.664

Our optimized area
decryptor

2752 0 1.598

Our optimized speed
encryptor

18855 200 28.51

Our optimized speed
decryptor

20155 200 23.09

6.6. AES Crypto Processor

In this section we will introduce a simple processor that could be used to make the
interface between the implemented AES encryptor/ decryptor datapaths and other external
peripheral under the control of an operator. We introduce two modes of operation in the
AES crypto processor. We called the first mode of operation discrete mode in which all
the data operations (input, output and processing) could be done by orders from the
operator. The second mode of operation is called the continuous mode in which the
operator will only start to get the key and all the consequent operation will be done
sequentially. We will use the first mode of operation to make the timing simulations (post
synthesis, post map and post place and route simulations) and practical tests to the
implemented hardware.

6.6.1. Crypto Processor Hardware Circuit

The crypto processor is mainly consists of the following components (Figure 6–18):

1. Encryptor/ decryptor unit: Any one of the previous implemented encryptors and
decryptors could be used in the crypto processor.

2. Input interface unit: It is a serial interface with handshaking between the
processor and external peripheral which is used to get the 128-bit data input
(plaintext/ ciphertext) to the encryptor/ decryptor and it is mainly consists of
serial to parallel shift register which takes data each clock cycle (it will takes
128 clock cycles to complete the data input to encryptor/ decryptor) and it has
the start, complete and reset as asynchronous control signals.

3. Key interface unit: This component is similar to the input interface unit and it is
used to input the 128-bits key used in encryption/ decryption unit.

4. Output interface unit: It is a 128-bit parallel to serial converter which is used to
output the data (ciphertext/ plaintext) serially from the encryptor/ decryptor
unit. Similar to the input and key interface units, the output interface unit takes

 93

128 clock cycles to output the data and it has the start, complete and reset as
asynchronous control signals.

5. Control Unit: It is a Moore finite state machine FSM (see Figure 6–19) which
forms the interface between the operator and all another units in the processor.
The control unit is used to generate all asynchronous control signals for all units
in the design. From the Figure 6–19, it is clear that we will use the same states
in the FSM for both of the two modes (continuous mode with the dotted arrows
and discrete mode with solid arrows).

 Figure 6–18: AES crypto processor

 94

 State
Signal

Idle Key Request Input Request Encrypt/ Decrypt Output ready

Request Key 0 1 0 0 0
Request Input 0 0 1 0 0
Output Ready 0 0 0 0 1
Input Key Done 0 0 1 1 1
Input Data Done 0 0 0 1 1
Encryption Done 0 0 0 0 1
Output data done 0 0 0 0 1

Figure 6–19: Control Unit FSM

6.6.2. Crypto Processor Functional Simulation Results

Figure 6–20 shows the functional simulation for the AES crypto processor with the
optimized area AES encryptor in the discrete mode of operation.

Figure 6–20: Behavioral simulation of AES crypto processor

 95

6.6.3. Crypto Processor Timing Simulation Results

Figure 6–21 shows the post place and route simulation results (at 10 MHz Clock)
which agrees with the functional simulation results and the following message appears on
the modelsim simulator screen:

Figure 6–21: post place and route simulation of AES crypto processor

Similarly we made the timing simulation for the optimized area decryptor and
optimized speed encryptor and decryptor and we got results as same as the above
simulation.

** Warning: /X_LATCHE RECOVERY Low VIOLATION ON SET WITH RESPECT TO CLK;
Expected := 0.606 ns; Observed := 0.072 ns; At : 1.686 ns
Time: 1686 ps Iteration: 5 Instance: /proc_test/uut/c7_dout_ok_4027
** Failure: Simulation successful (not a failure). No problems detected.
Time: 50100 ns Iteration: 0 Process: /proc_test/line__115 File: proc_test.timesim_vhw

 96

C h a p t e r 7

APPLICATIONS OF AES

In this chapter we present two applications of the AES. The first application is AES
key wrap standard. The second application is deterministic random bit generator (DRBG)
based on the AES block cipher.

7.1. AES Key Wrap
7.1.1. Introduction

The rapid growth of information technology that has resulted in significant advances in
cryptography to protect the integrity and confidentiality of data is astounding. New
algorithms have been introduced such as the Advanced Encryption Standard (AES) as
defined in the Federal Information Processing Standard (FIPS) 197 to offer three security
strengths: 128 bits, 192 bits and 256 bits. The use of AES requires the establishment/
wrap of shared keying material in advance. Manual distribution methods such as trusted
couriers are inefficient and complex. They simply do not scale as the system grows. Key
establishment/ wrap schemes are required to distribute keys in today’s communication
systems. Protocols such as S/MIME, SSL and IPSec all use key establishment/ wrap
schemes. Key establishment/ wrap are fundamental to security that the American National
Standards Institute (ANSI) and the National Institute of Standards and Technology (NIST)
are producing standards and recommendations for key establishment/ wrap.

AES key wrap specification is intended to satisfy the NIST Key Wrap requirement to:
Design a cryptographic algorithm called a Key Wrap that uses the Advanced Encryption
Standard (AES) as a primitive to securely encrypt a plaintext key(s) with any associated
integrity information and data, such that the combination could be longer than the width
of the AES block size (128-bits). Each ciphertext bit should be a highly non-linear
function of each plaintext bit and (when unwrapping) each plaintext bit should be a highly
nonlinear function of each ciphertext bit. It is sufficient to approximate an ideal
pseudorandom permutation to the degree that exploitation of undesirable phenomena is as
unlikely as guessing the AES engine key. This key wrap algorithm needs to provide ample
security to protect keys in the context of prudently designed key management architecture.

Throughout this section, any data being wrapped will be referred to as the key data. It
makes no difference to the algorithm whether the data being wrapped is a key; in fact
there is often good reason to include other data with the key, to wrap multiple keys
together, or to wrap data that isn’t strictly a key. So, the term “key data” is used broadly to
mean any data being wrapped, but particularly keys, since this is primarily a key wrap
algorithm. The key used to do the wrapping will be referred to as the key encryption key
(KEK). In this document a KEK can be any valid key supported by the AES codebook.
That is, a KEK can be a 128-bit key, a 192-bit key, or a 256-bit key [55].

 97

7.1.2. Overview

Symmetric key algorithms may be used to wrap (i.e., encrypt) keying material using a
key-wrapping key (also known as a key encrypting key). The wrapped keying material
can then be stored or transmitted securely. Unwrapping the keying material requires the
use of the same key-wrapping key that was used during the original wrapping process.
Key wrapping differs from simple encryption in that the wrapping process includes an
integrity feature. During the unwrapping process, this integrity feature detects accidental
or intentional modifications to the wrapped keying material. The AES key wrap is
designed to wrap or encrypt key data. The key wrap operates on blocks of 64 bits. Before
being wrapped, the key data is parsed into n blocks of 64 bits.

The only restriction the key wrap algorithm places on n is that n is at least two. (For
key data with length less than or equal to 64 bits, the constant field used in this
specification and the key data form a single 128-bit codebook input making this key wrap
unnecessary.) It is recognized that n ≤ 4 will accommodate all supported AES key sizes.
However, other cryptographic values often need to be wrapped. One such value is the
seed of the random number generator for DSS. This seed value requires n > 4.
Undoubtedly other values require this type of protection. Therefore, no upper bound is
imposed on n. The AES key wrap can be configured to use any of the three key sizes
supported by the AES codebook. The choice of a key size affects the overall security
provided by the key wrap, but it does not alter the description of the key wrap algorithm.
Therefore, in the description that follows, the key wrap will be described generically; i.e.
no key size will be specified for the KEK.

7.1.3. Key Wrapping Algorithm

The specification of the key wrap algorithm requires the use of the AES codebook. The
next three sections will describe the key wrap algorithm, the key unwrap algorithm, and
the inherent data integrity check.

7.1.3.1. Key Wrap

The inputs to the key wrapping process are the KEK and the plaintext to be wrapped.
The plaintext consists of n 64-bit blocks, containing the key data being wrapped. The key
wrapping process is described below.

 98

Figure 7–1 shows the motion of key wrap algorithm.

Figure 7–1: Motion of key wrap algorithm

An alternative description of the key wrap involves indexing rather than shifting. This
approach allows you to calculate the wrapped key in place, avoiding the rotation in the
previous description. This produces identical results and is more easily implemented in
software.

 99

7.1.3.2. Key Unwrap

The inputs to the unwrap process are the KEK and (n + 1) 64-bit blocks of ciphertext
consisting of previously wrapped key. It returns n blocks of plaintext consisting of the n
64-bit blocks of the decrypted key data.

Figure 7–2 shows the Motion of key unwrap algorithm

 100

Figure 7–2: Motion of key unwrap algorithm

The key unwrap algorithm can also be specified as an index based operation, allowing
the calculations to be carried out in place. Again, this produces the same results as the
register shifting approach

7.1.3.3. Key Data Integrity—the Initial Value

The initial value (IV) refers to the value assigned to A0 in the first step of the wrapping
process. This value is used to obtain an integrity check on the key data. In the final step of

 101

the unwrapping process, the recovered value of 0 A is compared to the expected value of
A0. If there is a match, the key is accepted as valid, and it is returned by the unwrapping
algorithm. If there is not a match, then the key is not accepted as valid, and the
unwrapping algorithm returns an error.

The exact properties achieved by this integrity check depend on the definition of the
initial value. Different applications may call for somewhat different properties; for
example, whether there is need to determine the integrity of key data throughout its
lifecycle or just when it is unwrapped. This specification defines a default initial value
that supports integrity of the key data during the period it is wrapped. Provision is also
made to support alternative initial values, if called for in other NIST publications on key
management.

The default initial value (IV) is defined to be the hexadecimal constant, A = IV
= A6A6A6A6A6A6A6A6. The use of a constant as the IV supports a strong integrity
check on the key data during the period that it is wrapped. If unwrapping produces
A0= A6A6A6A6A6A6A6A6, then the chance that the key data is corrupt is 2-64. If
unwrapping produces A0≠ A6A6A6A6A6A6A6A6, then the key unwrap algorithm must
return an error and not return any key data.

When the key wrap is used as part of a larger key management protocol or system, the
desired scope for data integrity may be more than just the key data or the desired duration
for more than just the period that it is wrapped. Also, if the key data is not just an AES
key, it may not always be a multiple of 64 bits. Alternative definitions of the initial value
can be used to address such problems. NIST will define alternative initial values in future
key management publications as needed. In order to accommodate a set of alternatives
that may evolve over time, key wrap implementations that are not application-specific will
require some flexibility in the way that the initial value is set and tested.

7.2. Hardware Implementation of AES Key Wrap

7.2.1. Hardware Architecture

The key wrap/ unwrap algorithm shown in Figure 7–1 and Figure 7–2 uses the 128 bit
AES encryptor/ decryptor with feedback. In our design of the AES key wrap/ unwrap
algorithm we will use the loop unrolled architecture for both cipher/ decipher and key
expansion (shown in Figure 7–3, Figure 7–4) which achieves the largest throughput in
feedback modes. The key wrap/ unwrap top entity is shown in Figure 7–5.

 102

Figure 7–3 : Loop Unrolled Architecture

Figure 7–4: Key Expansion Architectur

Figure 7–5: Key wrap/ unwrap top level entity

7.2.2. Functional Simulation Results

Figure 7–6 and Figure 7–7 shows the functional simulation results of the AES key
wrap/ unwrap algorithm for the test vector data given in the NIST specification [55].

Figure 7–6: Functional simulation results of key wrap algorithm

 103

Figure 7–7: Functional simulation of key unwrap algorithm

7.2.3. Hardware Implementation Results

Table 7–1 shows the Implementation results of the key wrap/ unwrap algorithm. It is clear
that loop unrolled architecture consumes area less than optimized speed (pipelined
architecture) and it yields a throughput more than optimized area (basic architecture). The
key wrap area and throughput differs from the key unwrap area and throughput due to the
difference in the algorithms of the encryptor and decryptor.

Table 7–1: Implementation results of the key wrap/ unwrap algorithm
 Key wrap Key unwrap
Number of Slices 17897 out of 26624

67%
17414 out of 26624

65%

Number of Slice Flip-Flops 1919 out of 53248
3%

1794 out of 53248
3%

Number of 4 inputs LUTs 34767 out of 53248
65%

33724 out of 53248
63%

Minimum Period
(Maximum Frequency)

40.080ns
(24.950MHz)

48.351ns
(20.682MHz)

Minimum input arrival time
before clock 36.873ns 34.630ns

Maximum output required
time after clock 3.921ns 3.921ns

128 24.95 3.194

1
MHzKey WrapThroughput Gbps×

= =

128 20.682 2.65
1

MHzKey UnwrapThroughput Gbps×
= =

7.3. DRBGs Based on AES Block Cipher

Random number generators (RNGs) are required for the generation of keying material
(e.g., keys and initialization vectors (IVs)) [58]. There are two classes of RNGs:
deterministic and non-deterministic. Deterministic Random bit Generators (DRBGs),
sometimes called deterministic random number generators or pseudorandom number

 104

generators, use cryptographic algorithms to generate random numbers. Non-Deterministic
Random Bit Generators (NDRBGs), sometimes called true RNGs, produce output that is
dependent on some unpredictable physical source that is outside human control, for
example, radioactive decay or a true noise hardware randomizer.

There are two fundamentally different strategies for generating random bits. One
strategy is to produce bits non-deterministically, where every bit of output is based on a
physical process that is unpredictable; this class of random bit generators (RBGs) is
commonly known as non deterministic random bit generators (NRBGs). The other
strategy is to compute bits deterministically using an algorithm; this class of RBGs is
known as Deterministic Random Bit Generators (DRBGs). A block cipher DRBG is based
on a block cipher algorithm. The block cipher DRBG mechanism specified in this
Recommendation has been designed to use any Approved block cipher algorithm and may
be used by consuming applications requiring various security strengths, providing that the
appropriate block cipher algorithm and key length are used, and sufficient entropy is
obtained for the seed.

This section describes two classes of DRBGs based on block ciphers [56]: One class
uses the block cipher in OFB mode; the other class uses the CTR mode. There are no
practical security differences between these two DRBGs; CTR mode guarantees that short
cycles cannot occur in a single output request, while OFB- mode guarantees that short
cycles will have an extremely low probability. OFB mode makes slightly less demanding
assumptions on the block cipher, but the security of both DRBGs relates in a very simple
and clean way to the security of the block cipher in its intended applications. This is a
fundamental difference between these DRBGs and the DRBGs based on hash functions,
where the DRBG's security is ultimately based on pseudo randomness properties that don't
form a normal part of the requirements for hash functions. An attack on any of the hash
based DRBGs does not necessarily represent a weakness in the hash function; however,
for these block cipher-based constructions, a weakness in the DRBG is directly related to
a weakness in the block cipher .

Specifically, suppose that there is an algorithm for distinguishing the outputs of either
DRBG from random with some advantage. If that algorithm exists, it can be used to build
a new algorithm for distinguishing the block cipher from a random permutation, with the
same time and memory requirements and advantage.

Because there is no practical security difference between the two classes of block-
cipher based DRBGs, the choice between the two constructions is entirely a matter of
implementation convenience and performance. An implementation that uses a block
cipher in OFB, CBC, or full-block CFB mode can easily be used to implement the OFB
based DRBG construction; an implementation that already supports counter mode can
reuse that hardware or software to implement the counter-mode DRBG. In terms of
performance, the CTR-mode construction is more amenable to pipelining and parallelism,
while the OFB- mode construction seems to require slightly less supporting hardware.

In this section we will introduce the two DRBGs based on the 128 bit AES block
cipher (CTR DRBG and OFB DRBG) [57].

 105

7.3.1. DRBG Based on AES in CTR Mode

Figure 7–8 shows the DRBG based on the AES block cipher in CTR mode [57]. The
initial 128-bit seed is loaded into the seed register. This seed forms the initial value of the
counter register. Every clock cycle the counter value is incremented. The counter value is
loaded into the AES unit and it is encrypted. The encrypted value is the generated random
number that is written out. Starting form a secure non-repeating initial seed, 2128sequences
of 128-bit random numbers are generated. Moreover, the throughput rate of the random
number generation is equal to maximum throughput of the AES algorithm.

Figure 7–8: Counter mode AES DRBG

7.3.2. DRBG Based on AES in OFB Mode

Figure 7–9 shows the DRBG based on the AES block cipher in OFB mode [57]. The
initial 128-bit seed is loaded into the seed register. This seed forms the initial value of the
encryptor. Every clock cycle the encryptor output is feedback to the input register. The
input value is loaded into the AES unit and it is encrypted. The encrypted value is the
generated random number that is written out. Starting form a secure non-repeating initial
seed, 2128

 sequences of 128-bit random numbers are generated. Moreover, the throughput
rate of the random number generation is equal to maximum throughput of the AES
algorithm.

 106

Figure 7–9: OFB mode AES DRBG

7.4. Hardware Implementation of the AES DRBG
7.4.1. Hardware Architecture

Any architecture of the AES hardware architectures mentioned in section 4.1.1 could
be used to implement the DRBG based on the AES CTR mode. We will implement it
based on the pipelined architecture (Figure 6–13-a) to achieve a high throughput.

For the DRBG based on the AES in the OFB mode the most suitable architecture is the
loop unrolled architecture shown in Figure 7–3 which compromise between relatively
high throughput (higher than basic architecture) and relatively low area (smaller than
pipelined architecture).

Figure 7–10 shows the AES based DRBG top level entity for both CTR and OFB
modes.

Figure 7–10: AES DRBG top level entity

 107

7.4.2. Functional Simulation Results

Figure 7–11 and Figure 7–12 shows the functional simulation results of the AES CTR
and OFB based DRBGs for the test vector key and initial seed [10].

Figure 7–11: Functional simulation of the AES CTR DRBG

Figure 7–12: Functional simulation of the AES OFB DRBG

7.4.3. Hardware Implementation Results

Table 7–2 shows the implementation results of the DRBG based on the AES in CTR and
OFB modes of operation. It is clear that the CTR DRBG has a high throughput and area
and the OFB DRBG has area and throughput smaller than the CTR DRBG. We can use on
of the two DRBGs in the applications required high speed or low area. The difference
between the two DRBGs is mainly due to the difference of the number of registers between
pipelined architecture and loop unrolled architecture.

 108

Table 7–2: Implementation results of the DRBG based on the AES in CTR and
OFB modes

 CTR DRBG OFB DRBG
Number of Slices 16231 out of 26624

60%
17914 out of 26624

67%

Number of Slice Flip-Flops 5281 out of 53248
9%

1668 out of 53248
3%

Number of 4 inputs LUTs 31231 out of 53248
58%

34764 out of 53248
65%

Minimum Period
(Maximum Frequency)

6.732ns
(148.536MHz)

39.599ns
(25.253MHz)

Minimum input arrival time
before clock 5.111ns 36.867ns

Maximum output required
time after clock 3.921ns 3.935ns

128 148.536 19.012
1

MHzCTR DRBG Throughput Gbps×
= =

 128 25.253 3.232
1

MHzOFB DRBG Throughput Gbps×
= =

 109

C h a p t e r 8

CONCLUSION AND FUTURE WORK

Cryptography plays an important role in the security of data transmission. Different
applications of the AES algorithm may require different speed/area trade-offs. Some
applications, such as smart cards and cellular phones, require small area. Other
applications, such as WWW servers and ATMs, are speed critical. Some other
applications, such as digital video recorders, require an optimization of speed/area ratio.
Various optimizations for implementation are developed to suit the different demands of
applications. Architectural optimizations make use of duplicating the round units, while
algorithmic optimizations explore algorithm simplification inside each encryption/
decryption round unit.

In chapter 2 we give a brief introduction to the cryptography and its types. We focus on
the private key cryptography and its modes of operation. Also, we have introduced a brief
mathematical background about the finite fields which is used in the AES. After this, a
complete explanation of the AES algorithm (cipher, decipher and key expansion
algorithms) has been introduced.

In chapter 3 we have introduced the heuristic techniques used in the design of the
cryptographic substitution boxes (S-boxes). In this chapter, we introduce the
cryptographic properties of a good Boolean function and S-box (high nonlinearity and low
autocorrelation). We use heuristic optimization algorithms such as hill climbing,
simulated annealing, tabu search and genetic algorithms to find a solution for the S-box
problems and we introduce S-box with good cryptographic properties (compared with the
recent research results cited in this thesis) which could be used as AES S-box.

Chapter 4 has explored various Architectural and algorithmic optimization approaches
for efficient hardware implementations of the AES algorithm. In this chapter, we
introduce various AES hardware architectures which could be used to meet the various
implementation goals (area and speed). Also, a full description of the MixColumns
transformation has been introduced. The implementation of the whole round unit as S-box
has been covered by this chapter. In addition, the joint implementation issues of the
encryptor and decryptor are also discussed and compared.

In Chapter 5, various methods used for efficient hardware implementation of the AES
S-box have been introduced. In this chapter, we select the look up table method to
implement an AES S-box with high speed and the finite field arithmetic (mapping from
GF(28) to GF(24)) to implement an AES S-box with low area.

The goals of this thesis were to implement a low area and a high speed AES encryptor
and decryptor using various optimization techniques and to implement AES crypto
processor with serial interface with external peripherals on FPGA. These goals have been
met. In chapter 6, optimized area and optimized speed AES encryptor and decryptor and
AES crypto processor are completed, simulated and verified. The code was written in

 110

VHDL’93 and synthesized and verified using the Xilinx ISE 7.1 program and simulated
using the Modelsim program.

Optimized area AES (encryptor, decryptor) have been implemented based on the basic
architecture and it consumes (1468, 2752 Xilinx slices) and operates at (1.664, 1.558
Gbps). Optimized speed AES (encryptor, decryptor) have been implemented based on the
basic architecture and it consumes (18855, 20155 Xilinx slices) and operates at (28.51,
23.09 Gbps), which was greater than other works cited in this thesis.

In chapter 7 we have been introduced two applications of the AES. The first
application was the AES key wrap/ unwrap algorithms based on the loop unrolled
architecture and it consumes (17897, 17414 Xilinx slices) and operates at (3.19, 2.65
Gbps). The second application was the deterministic random bit generator (DRBG) based
on the AES in counter (CTR) and output feedback mode (OFB). The CTR DRBG has
been implemented based on the pipelined architecture and it consumes (16231 Xilinx
slices) and operates at (19 Gbps).The OFB DRBG has been implemented based on the
loop unrolled architecture and it consumes (17914 Xilinx slices) and operates at (3.23
Gbps).

There are several opportunities for future work as a result of this thesis:

1. Improve the cryptographic properties of the S-boxes is an urgent issue. Until now
all the heuristic optimization methods didn’t reach the desired cryptographic
properties which are achieved using algebraic methods. Other optimization
methods and cost functions could be used to improve the cryptographic properties
of the S-boxes.

2. For both optimized area and speed AES on FPGA we found that the FPGA routing
delay plays an important role in the maximum operating frequency, which could
be reduced in ASIC design.

3. Another work that could be done is the study of optimization approaches for the
implementations supporting multiple key lengths and modes of operation.

4. For the optimized speed AES, the look up implementation of the whole round unit
could be applied to reduce the delay caused by the internal transformations.

5. For the optimized area AES, The joint hardware implementation of AES encryptor
and decryptor to save the area consumed by separate implementations of encryptor
and decryptor.

6. Also we can study other implementation approaches for the SubBytes and
MixColumns transformations (which consume most of the chip area) to reduce the
area.

 111

REFRENCES

[1] P.C. Van Oorschot A.J. Menezes and S. A. Vanstone, ‘Handbook of applied
cryptography”, CRC Press, Waterloo, Ontario, Canada, 2001.

[2] K. Aoki1 and H. Lipmaa, “Fast implementations of AES candidates, Third AES
Candidate Conference” (New York City, USA), April 2000

[3] R.Ashruf, “The AES targeted on MOLEN processor”, Ms thesis Delft university of
technology , 2004.

[4] A.J. Elbirt W. Yip B. Chetwynd and C. Paar, “An FPGA implementation and
performance evaluation of the aes block cipher candidate algorithm finalists”, Third
AES Candidate Conference (AES3), April 2000.

[5] N. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers with overdefined
systems of equations”, Asiacrypt 2002, December 2002.

[6] C. Kessler Gary, “An Overview of Cryptography”, Handbook on Local Area
Networks, Auerbach, 1998.

[7] S. William , “Cryptography and Network Security Principles and Practices”, Fourth
Edition, Prentice Hall, November 16, 2005

[8] D. Morris, “Recommendation for Block Cipher Modes of Operation Methods and
Techniques”, NIST Special Publication 800-38A 2001 Edition
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[9] J. Daemen and R.Rijmen, “AES Proposal: Rijndael”, NIST AES proposal version
2, 1999. http://www.esat.kuleuven.ac.be/~rijmen/ rijndael.

[10] “Advanced Encryption Standard(AES)”, Federal Information Processing Standards
Publication 197, November 26, 2001

[11] Linda B, “Heuristic Design of Boolean Functions and Substitution Boxes for
Cryptography”, Ph.D Queensland University of Technology, 2005.

[12] A. C. John and L. J. Jeremy and Suzan S, “The Design of S-Box by Simulated
Annealing”,In CEC 2004: International Conference on Evolutionary Computation,
Portland OR, USA, June 2004, pages 1533.1537. IEEE, 2004.

[13] M. Matsui. “Linear Cryptanalysis Method for DES Cipher”. In Tor Helleseth,
editor, Advances in Cryptology - EuroCrypt ’93, pages 386– 397, Berlin, 1993.
Springer-Verlag. Lecture Notes in Computer Science Volume 765.

[14] E. Biham and A. Shamir. “Differential Cryptanalysis of DES-like Cryptosystems”
(Extended Abstract). In Alfred J. Menezes and Scott A. Vanstone, editors,
Advances in Cryptology - Crypto ’90, pages 2–21, Berlin, 1990. Springer-Verlag.
Lecture Notes in Computer Science Volume 537.

[15] H. Heys. “A tutorial on linear and differential cryptanalysis”. Technical report,
Electrical and Computer Engineering, University of Newfoundland, St. John’s,
Newfoundland, Canada.

[16] W. Millan. “How to Improve the Non-linearity of Bijective S-boxes”. In C. Boyd
and E. Dawson, editors, 3rd Australian Conference on Information Security and
Privacy, pages 181–192. Springer-Verlag, April 1998. Lecture Notes in Computer
Science Volume 1438.

[17] W. Millan, L. Burnett, G. Carter, A. Clark, and E. Dawson. “Evolutionary
Heuristics for Finding Cryptographically Strong S-Boxes”. In ICICS 99, 1999.

[18] J. A. Clark, J. L. Jacob, Susan Stepney, S. Maitra, and W. Millan. “Evolving
Boolean Functions Satisfying Multiple Criteria”. In Progress in Cryptology -
INDOCRYPT 2002, pages 246–259. Springer Verlag LNCS 2551, 2002.

 112

[19] S. Maitra J. A. Clark, J. L. Jacob and P. Stanica. “Almost Boolean functions: the
Design of Boolean Functions by Spectral Inversion.” In Conference on
Evolutionary Computation —CEC-03, December 2003.

[20] W. Millan, A. Clark, and E. Dawson, “Boolean function design using hill climbing
methods”. In Information Security and Privacy, ACISP '99, volume 1587 of
Lecture Notes in Computer Science, pages 1{ 11. Springer Verlag, 1999.

[21] A. Canteaut, C. Carlet, P. Charpin, and Caroline Fontaine. Propagation
characteristics and correlation-immunity of highly nonlinear Boolean functions. In
Advances in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 507{522. Springer Verlag,2000).

[22] P. Chardaire, J. C. Lutton, and A. Sutter.” Thermostatistical Persistency: A
Powerful Improving Concept for Simulated Annealing”. European Journal of
Operations Research, 86:565–579, 1995.

[23] C. Blum and A. Roli. “Metheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison”. Research Report TR/IRIDIA/2001-13, Institut de
Recherches Interdisciplinaires et de Developpements en Intelligence Artificielle
(IRIDIA), Universit´e Libre de Bruxelles, 2001.

[24] C. R. Reeves, editor. “Modern Heuristic Techniques for Cominatorial Problems”.
McGraw Hill, 1995.

[25] J. H. Holland. “Adaptation in Natural and Artificial Systems”. University of
Michigan Press, 1975.

[26] L. Davis. “Handbook of Genetic Algorithms”. Van Nostrand Reinhold, January
1991.

[27] Z. Xinamiao and K. Parhi, “Implementation Approaches for The Advanced
Encryption Standard”, Circuit and System Magazine, Volume 2, Number 4, Fourth
Quarter 2002.

[28] J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA Implementation and
Performance Evaluation of the AES Block Cipher Candidate Algorithm Finalist”,
the Third AES Conference (AES3), New York, April 2000.

http:// csrc.nist.gov/encryption/aes/round2/ conf3/aes3papers.html.
[29] K. Gaj and P. Chodowiec, “Comparison of the Hardware Performance of the AES

Candidates Using Reconfigurable Hardware”, The Third AES Conference (AES3),
New York, April 2000.
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html.

[30] M. McLoone and J. V. McCanny, “Rijndael FPGA Implementation Utilizing Look-
Up Tables”, IEEE Workshop on Signal Processing Systems, pp. 349–360,
September 2001.

[31] M. McLoone and J. V. McCanny, “Rijndael FPGA Implementation Utilizing
Look-Up Tables”, IEEE Workshop on Signal Processing Systems, pp. 349–360,
September 2001.

[32] T. Ichikawa, T. Kasuya, and M. Matsui, “Hardware Evaluation of the AES
Finalists”, The Third AES Conference (AES3), New York, April 2000.
http://csrc.nist.gov/encryption/aes/ round2/conf3/aes3papers.html.

[33] C. C. Lu and S. Y. Tseng, “Integrated Design of AES (Advanced Encryption
Standard) Encrypter and Decrypter”, IEEE Transactions on Information
Theory, vol. 37, no. 5, pp. 1241–1260, September 1991.

[34] H. Kuo and I. Verbauwhede, “Architectural Optimization for a 1.82Gbits/sec
VLSI Implementation of the AES Rijndael Algorithm”, Proceedings CHES 2001, pp.

 113

51–64, Paris, France, May 2001.
[35] V. Fischer and M. Drutarovsky, “Two Methods of Rijndael Implementation in

Reconfigurable Hardware”, Proceedings CHES 2001, pp. 77–92, Paris, France,
May 2001.

[36] V. Fischer, “Realization of the Round 2 Candidates Using Altera FPGA”, The
Third AES Conference (AES3), New York, Apr. 2000.
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html.

[37] A.Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, and P. Rohatgi,
“Efficient Implementation of Rijndael Encryption with Composite Field
Arithmetic”, Proceedings CHES 2001, pp. 171–184, Paris, France, May 2001.

[38] V. Rijmen, “Efficient Implementation of the Rijndael S-box”,
http:// www.esat.kuleuven.ac.be/~rijmen/ rijndael.

[39] K. K. Parhi, “VLSI Digital Signal Processing Systems Design and Application”, John
Wiley & Sons, pp. 559–562, 1999.

[40] J. Daemen and R.Rijmen, “Rijndael: The Advanced Encryption Standard”, Dr.
Dobb’s Journal, pp. 137–139, March 2001.

[41] M. McLoone and J.V.McCanny, “High Performance Single-Chip FPGA Rijndael
Algorithm Implementation”, Proceedings CHES 2001, pp. 65–76, Paris, France,
May 2001.

[42] N. Weaver and J. Wawrzynek, “A Comparison of the AES Candidates Amenability
to FPGA Implementation”, The Third AES Conference (AES3), New York, April
2000. http://csrc.nist.gov/ e n c r y p t i o n / a e s / r o u n d 2 / c o n f 3 / aes3papers.html.

[43] K. Araki, I. Fujita and M. Morisue, "Fast Inverter Over Finite Fields Based on
Euclid's Algorithm," Trans. IEICE, Vol. E-72, No. 11, pp. 1230–1234, Nov. 1989.

[44] H. Brunner, A. Curiger, and M. Hofstetter, "On Computing Multiplicative Inverse
in GF(2m) ," IEEE Trans. on Computer, Vol. 42., No. 8, pp. 1010–1015,Aug. 1993.

[45] C. Paar, "A New Architecture for a Parallel Finite Field Multiplier with Low
Complexity Based on Composite Fields," IEEE Trans. on Comp., Vol. 45, No. 7,
pp 856–861, 1996.

[46] C. Paar, "Fast Arithmetic Architecture for Public Key Algorithms over Galois
Fields GF((2n)m)," Proc. EUROCRYPT'97, LNCS Vol. 1233, Springer-Verlag, pp.
363-378, 1997.

[47] A. Rudra et. al., "Efficient Implementation of Rijndael Encryption with Composite
Field Arithmetic," Proc. CHES 2001, LNCS Vol. 2162, pp. 175-188, 2001.

[48] S. Morioka and A. Satoh, "An Optimized S-box Circuit Architecture for Low
Power AES Design," Proc. CHES 2002, LNCS Vol. 2523, pp. 172-186, 2003.

[49] C. Jutla, V. Kumar and A. Rudra, "On the Complexity of Isomorphic Galois Field
Transformations," IBM Research Report, Vol. RC22652 (W0211-243), November
2002.

[50] E.D. Mastrovito, "VLSI Architecture for Computations in Galois Fields," Dept.
Electrical Engineering, Linkoping University, Sweden, 1991.

[51] S. Chantarawong, P. Noo-intara, and S. Choomchuay,” An Architecture for S-Box
Computation in the AES”, Proc of Information and Computer Engineering
Workshop 2004 (ICEP2004), Prince of Songkla University (Phuket Campus),
January 2004, pp.157-162.

[52] D. J. Smith, ”HDL Chip Design”, second edition, Doone Pubns (March 1998).

 114

[53] P. R. Chodowiec, “Comparison of the Hardware Performance of the AES
Candidates Using Reconfigurable Hardware”, Master Thesis George Mason
University, 2002.

[54] E. Oswald, “State of the Art in the Hardware Architecture”, European Network of
Excellence in Cryptology, 2005.

[55] “AES Key Wrap Specification”, National Institute of Standards and Technology,
November 2001.

[56] “Deterministic Random Bit Generator Based on Block Ciphers”, American
National Standards Institute, ANSI X9.82, Part 3, July 2004.

[57] J. Kelsey, “Five DRBG Algorithms Based on Hash Functions and Block Ciphers”,
National Institute of Standards and Technology, July 2004.

[58] E. Barker and J. Kelsey, “Recommendation for Random Number Generating Using
Deterministic Random Bit Generators”, National Institute of Standards and
Technology, Special Publication 800-90, June 2006.

 ملخص عربي

 آسب تأييداً واسعاً ليصبح الوسيلة المناسبة لتأمين وهو المعيار الجديد للتشفير و قد AES نظام التتشفير المتقدم
 مصفوفة قمنا باستعراض طرق و تقنيات تنفيذ نظام التشفير المتقدم علىفي هذه الرسالة . حماية البيانات الرقمية
 S-boxتطوير صناديق التعويضاً قمنا بتقديم طرق الأمثلة المستخدمة في أيض. FPGA البوابات القابلة للبرمجة

الخيارات المتاحة . المستخدمة في نظام التشفير المتقدم و قمنا باقتراح صندوق تعويض جديد ذو خصائص تشفير جيدة
حث بتنفيذ تصميمين مختلفين قمنا في هذا الب. بين السرعة و المساحة الملازمة لتصميم معالج آمن قمنا أيضاً باستعراضها

النظام و التصميم الثاني معتمد على الأول معتمد على البنية الأساسية لنظام التشفير المتقدم التصميملنظام التشفير المتقدم
ذو وصلة تسلسلية من الممكن استخدامه مع لنظام التشقير المتقدم وقمنا بتصميم و تنفيذ معالج امنيالمعماري المنقول

في وضع التغذية أيضا قمنا بتنفيذ تطبيقين مختلفين لنظام التشفير المتقدم . تصميم قمنا بتقديمه لنظام التشفير المتقدمأي
قمنا في هذه الرسالة بإعطاء نتائج محاآاة و نتائج تنفيذ آاملة لكلٍ تصميم من التصميمات الواردة في الرسالة و . الخلفية

 :لنحو التاليقد قمنا بترتيب هذا البحث على ا

 التطبيقات التي يستخدم فيها و مستلزماتها من في الفصل الأول مقدمة مختصرة عن نظام التشفير المتقدم و
مصفوفات طرق تنفيذه على آل من البرمجيات و الشرائح الإلكترونية المعدة لغرض محدد و سرعة أو مساحة و

 .البوابات القابلة للبرمجة

 عاماً إلى علم التشفير و أنواعه مع الترآيز على التشفير بمفتاح خاص و أوضاع عمله الفصل الثاني يوفر مدخلاً
 . النظامعن شرحاً مفصلاً لنظام التشفير المتقدم مع خلفية رياضية مختصرة أيضاًيوفر و

 الفصل الثالث يناقش الخواص الأمنية الجيدة التي يجب توافرها في صناديق التعويض المستخدمة في نظام
 .التشفير المتقدم و طرق الأمثلة التجريبية المستخدمة لتطوير هذه الخواص لدالة ثنائية واحدة و لصناديق التعويض

هة النظر يناقش الطرق المختلفة المستخدمة لتنفيذ نظام تشفير متقدم ذو آفاءة عالية من وجالرابعالفصل
أيضاً قمنا بمناقشة مسألة مشارآة . حيث السرعة و المساحة هي أهداف الأمثلة في هذا الفصلالمعمارية و الوظيفية

 .الموارد بين آلة التشفير و آلة حل الشفرة

مختلفة لصناديق التعويض و التي تعتبر أآبر وظيفة تستهلك الوقت و الالتصميمالفصل الخامس يستعرض طرق
 لطريقة التنفيذ التي قمنا باستخدامها في تصميمنا مفصلاًاًعرض شرحي ا الفصلهذ .المساحة في نظام التشفير المتقدم

 .لنظام التشفير المتقدم مع عرض مقارنة بين الطرق المختلفة المستخدمة

لنظام التشفير المتقدم ذو المساحة المثلى و نظام التشفير تنفيذ العملي و نتائج المحاآاة ال يقدم الفصل السادس
السرعة المثلى مستخدمين ما تم عرضه من طرق التصميم الواردة في الفصلين الرابع و الخامس و قمنا بتقديم المتقدم ذو

أخيراً قمنا بتقديم نتائج المحاآاة و التصميم العملي . مقارنة بين تنفيذنا لنظام التشفير المتقدم و تنفيذات سابقة لنفس النظام
و الذي يمكن استخدامه في الاختبار العملي لأي من ر المتقدم ذو الوصلة التسلسلية للمعالج الأمني القائم على نظام التشفي

 .التصميمات التي قمنا بتنفيذها

الفصل السابع يستعرض تطبيقين لنظام التشفير المتقدم و تصميمهم العملي على مصفوفة البوابات القابلة
اح نظام التشفير المتقدم والتي يمكن استخدامها لنقل مفتاح التطبيق الأول هو الطريقة المستخدمة لتغطية مفت. للبرمجة

نظام الحلقة المبسطة . الشفرة في قناة اتصال غير مؤمنة و التطبيق الثاني هو مولد الأرفام الثنائية العشوائي المحدد
 .استخدم في تنفيذ نظام التشفير المتقدم في وضع التغذية الخلفية

ديمه في هذه الرسالة مع تصور مستقبلي لما يمكن أن يتم عمله بناءً على هذه ما تم تقيستعرض الفصل الثامن
 .الرسالة

 موافقون|الإشرافلجنة

 …………………… رزقمحمد محمد رزق |د
 جامعة الإسكندرية,الهندسة آلية

 …………………… حسني حنان |د
 جامعة الإسكندرية,الهندسة آلية

 …………………… هانية فرج |د
 جامعة الإسكندرية,الهندسة آلية

 التنفيذ العملي لنظام التشفير المتقدم
 بلة للبرمجة على مصفوفة البوابات القا

 مقدمة من

 محمد مرسي نعيم فرج

 درجة الماجستير في للحصول على

 الهندسة الكهربية

 موافقون :لجنة المناقشة و الحكم على الرسالة

 …………………… حسن محمد الكمشوشي . د.أ
 جامعة الإسكندرية,آلية الهندسة

 …………………… ئي مجدي فكري رجا. د.أ
 القاهرة جامعة ,آلية الهندسة

 …………………… محمد رزق محمد رزق .د
 جامعة الإسكندرية,آلية الهندسة

 وآيل الكلية لشئون الدراسات العليا و البحوث

 ..………………… حسام محمد فهمي غانم. د.أ

 جامعة الإسكندرية
 آلية الهندسة

 التنفيذ العملي لنظام التشفير المتقدم على مصفوفة

 البوابات القابلة للبرمجة

 رسالة علمية
 سكندرية جامعة الإ-مقدمة إلى الدراسات العليا بكلية الهندسة

 استيفاءاً جزئياً للدراسات المقررة للحصول على درجة

 الماجستير

 في

 الهندسة الكهربية

 مقدمة من

 حمد مرسي نعيم فرجم/ المهندس

2006

	thesis1.pdf
	thesis2.pdf
	thesis3.pdf
	thesis4.pdf
	thesis5.pdf

