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ABSTRACT 

The Advanced Encryption Standard (AES) is the new standard for cryptography and 
has gained wide support as means to secure digital data. In this thesis, we explored design and 
implementation approaches of the AES on field programmable gate arrays (FPGAs). We 
introduced the heuristic design techniques of the AES substitution boxes and we suggested an 
AES substitution box with good cryptographic properties. Tradeoffs of speed vs. area that are 
inherent in the design of a security processor are explored. Two implementations of the AES 
on Xilinx Virtex 4 FPGA are introduced, the first design is called optimized area AES which 
is based on the basic architecture of the AES, the second one is called optimized speed AES 
which is based on the sub-pipelined architecture of the AES. An AES crypto processor with 
serial interface was implemented and it could be used with any of our designed encryptor or 
decryptor. Two applications of the AES algorithm in feedback mode of operation were 
implemented on Xilinx Virtex 4 FPGA, one of the applications is the AES key wrap algorithm 
which could be used in the key transfer in unsecured communication channel, and the other 
application is the AES block cipher based deterministic random bit generator (DRBG) which 
could be used as a pseudo random number generator (PRNG). Loop unrolled architecture is 
used in the implementation of the AES in feedback mode of operation. A complete 
simulations and implementation results are provided for all of our designs. 
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C h a p t e r  1

INTRODUCTION 

Since privacy issues and network security are emerging due to the wide proliferation of 
Internet, the research in protecting information is increasing. Cryptographic algorithms, 
also known as ciphers, form the fundamental aspect within this research field. The most 
used and analyzed cryptographic algorithm of the last 20 years, is the Data Encryption 
Standard (DES) [1]. With the introduction of this cipher in the early 70s, there were 
several accusations concerning hidden back-doors, not transparent S-boxes and the length 
of the key. Despite all the criticism, DES became the encryption standard in 1977. In 1983 
it was shown [1] that the cipher is vulnerable due to its short key length. Considering the 
fact that the computing capacity is always increasing, the vulnerability of DES was a 
thorn in the eye. Therefore, an enhanced version of the cipher was introduced. This 
enhanced version known as Triple-DES [1] performs DES three times sequentially and 
therefore it is more secure than DES. However, the speed performance of Triple-DES on 
software based platforms was not interesting for practical applications. Therefore in 1997, 
the National Institute of Standards and Technology (NIST) organized a contest in order to 
develop a new cryptographic algorithm standard which would replace both DES and 
Triple-DES. More precisely, the main objective was to develop an algorithm that would at 
least offer the same security level which was provided by Triple-DES, but that should 
have higher performance than the performance of Triple-DES. Fifteen new block 
cryptographic algorithms were submitted [2]. On November 26, 2001, the algorithm 
known as Rijndael (pronounced Rhine-dall) was chosen to be the replacement for DES 
and since then it is known as the Advanced Encryption Standard (AES). This algorithm 
satisfies the following National Institute of Standard and Technology (NIST) statement 
:"Assuming that one could build a machine that could recover a DES key in a second, 
then it would take that machine approximately 149 thousand-billion (149 trillion) years to 
crack a 128-bit AES key. To put that into perspective, the universe is believed to be less 
than 20 billion years old." The development of high speed networks, has directed the 
research framework of protecting information, to a broader aspect then that of solely 
developing ciphers. Cipher performance, key management, policies and reliability aspects 
are important topics nowadays. These days, a lot of network security services and systems 
are implemented, such as Public Key Infrastructure (PKI) systems, web appliances, high-
speed routers and Firewalls, that are used for securing information. The communication in 
these systems is based on various protocols, for example the Secure Sockets Layer (SSL) 
protocol, the IP Security Protocol (IPSec) and the Transport Layer Security (TLS) 
protocol. Such protocols are not limited to one or two cryptographic algorithms, but they 
often use a combination of various cryptographic algorithms. The choice for a certain 
cipher within a communication process depends on several factors such as company 
policies on encryption strength and government restrictions on encryption export. 
Considering these facts and the fact that cryptographic algorithms are relative frequently 
upgraded, cryptographic flexibility and high speed performance are requirements in 
network systems. 
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The choice for a certain platform (e.g. software, ASICs or FPGAs) for implementing 
cryptographic applications is driven by several design aspects such as performance, costs, 
power and flexibility. The performance, costs and power aspects are expressed by well 
known metrics. However, these metrics do not completely characterize the designs that 
are implemented in reconfigurable hardware or software. For these designs, flexibility in 
redesign or hardware reconfiguration is also an important design issue. Flexibility is 
defined by IEEE as: "the ease with which a system or component can be modified for use 
in applications or environments other than those for which it was specifically designed" 
[4]. 

Since DES, and therefore also Triple-DES [3], was primarily designed for hardware 
based platforms, both cryptographic algorithms were often implemented in Application 
Specific Integrated Circuits (ASIC). These systems showed adequate speed performance. 

Also the AES implemented in ASIC results in high speed performance [5]. 
Furthermore, since ASICS are often produced in large quantities, they have favorable 
costs. However, since ASICs are completely hard-wired they lack flexibility. Their 
redesign is a complex and expensive process. Every change of the IC design leads to new 
an IC process mask, which is one of the major cost factors. Moreover, a prediction for 
future semiconductor technologies is that the cost of the mask will grow exponentially and 
will soon dominate the total cost of the production process. In short, although ASICs 
based solutions show adequate speed performance they are not suitable for demanding 
cryptographic network systems. 

In contrast to ASIC technology, a Field-Programmable Gate Array (FPGA) is fully 
reprogrammable. FPGAs provide reconfigurable hardware, flexible interconnect, and 
field-programmable ability without introducing extra costs. Therefore, substantial amount 
of work has been reported on various cryptographic algorithms implemented on FPGAs. 

While FPGAs used to be selected for lower speed/complexity/volume designs in the 
past, today’s FPGAs easily push the 500 MHz performance barrier. With unprecedented 
logic density increases and a host of other features, such as embedded processors, DSP 
blocks, clocking, and high-speed serial at ever lower price points, FPGAs are a 
compelling proposition for almost any type of design. Although these solutions show 
adequate speed performance and provide flexibility, they are not interesting for mass 
productions, since the cost of FPGA devices are still a bottleneck. FPGA devices are 
expensive compared to ASIC and software based solutions, but at the same time the 
FPGA devices have other advantages such as simple design cycle, faster time to test and 
market and field reprogram ability. These advantages besides the high speed of recent 
FPGAs devices make the FPGAs are the best solutions for the research purposes.       

Software based solutions, e.g. targeting applications on general-purpose 
microprocessors, digital signal processors or microcontrollers are fully reprogrammable. 
Beside the flexibility aspect, the cost aspect of such solutions is most favorable. However, 
the disadvantage of these solutions is that the speed performance is significantly lower 
than that based on ASICs and FPGAs. Therefore, even software based solutions are not 
suitable for some demanding cryptographic network systems. 
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When selecting the AES algorithm, both efficient software and hardware 
implementations were taken into consideration. This thesis addresses efficient hardware 
implementation approaches for the AES algorithm and introduces two implementation 
approaches (Optimized Area and Optimized speed) for the AES algorithm on FPGA (field 
programmable gate array). 

The organization of this thesis will be as follows: 

 Chapter 2 provides an introduction to cryptography and its types (with focus on private 
key cryptography and its modes of operation) and provides a detailed explanation for the 
AES algorithm with a brief mathematical background for the algorithm. 

 Chapter  3 discusses the cryptographic properties of good substitution boxes (S-boxes) 
and the heuristic optimization techniques used to improve this properties for a single 
Boolean function and S-box. Also this chapter introduces a suggested S-box which could 
be used in the AES algorithm. 

 Chapter 4 addresses various approaches for efficient hardware implementation of the 
AES from the architectural and algorithmic point of view (area and time are the 
optimization goal in this chapter). Also this chapter discusses Resources sharing issues 
between encryptor and decryptor. 

 Chapter 5 addresses various implementation methods of SubBytes transformation 
which is considered the most area and time consuming transformation in the AES 
algorithm. In this chapter we will provide a detailed explanation for the implementation 
method which we will use in our design for the algorithm with a comparison between 
different used methods.  

 Chapter  6 introduces our hardware implementation and simulation results of the 
optimized area AES (AES encryptor and decryptor with minimum area resources) and 
optimized speed AES (AES encryptor and decryptor with minimum delay) using various 
design methods addressed in Chapter 4 and   Chapter 5 with a comparison between the two 
implemented hardware and other previous implemented circuits. Finally we will introduce 
our implementation and simulation results for AES crypto processor with serial interface 
which could be used to make a practical test for any of our designed encryptors or 
decryptors.  

 Chapter  7 addresses two applications of the AES with there hardware implementation 
on FPGA . The first application is the AES key wrap/ unwrap algorithm. The second 
application is the deterministic random number generator (DRBG) based on the AES in 
the counter (CTR) and output feedback (OFB) modes of operation.  
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C h a p t e r  2  

ADVANCED ENCRYPTION STANDARD 

2.1. Brief Introduction to Cryptography 

Cryptography is the science of writing in secret code and is an ancient art; the first 
documented use of cryptography in writing dates back to circa 1900 B.C. when an 
Egyptian scribe used non-standard hieroglyphs in an inscription. Some experts argue that 
cryptography appeared spontaneously sometime after writing was invented, with 
applications ranging from diplomatic missives to war-time battle plans. It is no surprise, 
then, that new forms of cryptography came soon after the widespread development of 
computer communications. In data and telecommunications, cryptography is necessary 
when communicating over any un-trusted medium, which includes just about any 
network, particularly the Internet. 

• Within the context of any application-to-application communication, there are 
some specific security requirements, including: 

• Authentication: The process of proving one's identity. (The primary forms of 
host-to-host authentication on the Internet today are name-based or address-
based, both of which are notoriously weak.).  

• Privacy/confidentiality: Ensuring that no one can read the message except the 
intended receiver. 

• Integrity: Assuring the receiver that the received message has not been altered 
in any way from the original.  

• Non-repudiation: A mechanism to prove that the sender really sent this 
message. 

Cryptography, then, not only protects data from theft or alteration, but can also be used 
for user authentication. There are, in general, three types of cryptographic schemes 
typically used to accomplish these goals: secret key (or symmetric) cryptography, public-
key (or asymmetric) cryptography, and hash functions, each of which is described below. 
In all cases, the initial unencrypted data is referred to as plaintext. It is encrypted into 
ciphertext, which will in turn (usually) be decrypted into usable plaintext. 

2.2. Types of Cryptographic Algorithms 

There are several ways of classifying cryptographic algorithms [6]. They will be 
categorized based on the number of keys that are employed for encryption and decryption, 
and further defined by their application and use. The three types of algorithms that will be 
discussed are shown in Figure  2–1: 

• Secret Key Cryptography (SKC): Uses a single key for both encryption and 
decryption.  

• Public Key Cryptography (PKC): Uses one key for encryption and another for 
decryption.  
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• Hash Functions: Uses a mathematical transformation to irreversibly "encrypt" 
information.  

 
Figure  2–1: Three types of cryptography (Secret Key, Public Key and Hash Function) 

2.2.1. Secret Key Cryptography 

With secret key cryptography, a single key is used for both encryption and decryption. 
As shown in Figure  2–1-A, the sender uses the key (or some set of rules) to encrypt the 
plaintext and sends the ciphertext to the receiver. The receiver applies the same key (or 
rule set) to decrypt the message and recover the plaintext. Because a single key is used for 
both functions, secret key cryptography is also called symmetric encryption. 

With this form of cryptography, it is obvious that the key must be known to both the 
sender and the receiver; that, in fact, is the secret. The biggest difficulty with this 
approach, of course, is the distribution of the key. 

Secret key cryptography schemes are generally categorized as being either stream 
ciphers or block ciphers. Stream ciphers operate on a single bit (byte or computer word) at 
a time and implement some form of feedback mechanism so that the key is constantly 
changing. A block cipher is so-called because the scheme encrypts one block of data at a 
time using the same key on each block. In general, the same plaintext block will always 
encrypt to the same ciphertext when using the same key in a block cipher whereas the 
same plaintext will encrypt to different ciphertext in a stream cipher. 

Stream ciphers come in several flavors but two are worth mentioning here. Self-
synchronizing stream ciphers calculate each bit in the keystream as a function of the 
previous n bits in the keystream. It is termed "self-synchronizing" because the decryption 
process can stay synchronized with the encryption process merely by knowing how far 
into the n-bit keystream it is. One problem is error propagation; a garbled bit in 
transmission will result in n garbled bits at the receiving side. Synchronous stream ciphers 
generate the keystream in a fashion independent of the message stream but by using the 



 6 

same keystream generation function at sender and receiver. While stream ciphers do not 
propagate transmission errors, they are, by their nature, periodic so that the keystream will 
eventually repeat. 

Block ciphers can operate in one of several modes; the following five are the most 
important [7], [8]: 

• Electronic Codebook (ECB) mode is the simplest, most obvious application: 
the secret key is used to encrypt the plaintext block to form a ciphertext block. 
Two identical plaintext blocks, then, will always generate the same ciphertext 
block as shown in Figure  2–2. Although this is the most common mode of 
block ciphers, it is susceptible to a variety of brute-force attacks.  

 
Figure  2–2: Electronic Code Book (ECB) Mode 

• Cipher Block Chaining (CBC) mode adds a feedback mechanism to the 
encryption scheme. In CBC, the plaintext is exclusively-ORed (XORed) with 
the previous ciphertext block prior to encryption as shown in Figure  2–3. In this 
mode, two identical blocks of plaintext never encrypt to the same ciphertext.  

 
Figure  2–3: Cipher Bloch Chaining (CBC) Mode 

• Cipher Feedback (CFB) mode is a block cipher implementation as a self-
synchronizing stream cipher as shown in Figure  2–4. CFB mode allows data to 
be encrypted in units smaller than the block size, which might be useful in some 
applications such as encrypting interactive terminal input. If we were using 1-
byte CFB mode, for example, each incoming character is placed into a shift 
register the same size as the block, encrypted, and the block transmitted. At the 



 7

receiving side, the ciphertext is decrypted and the extra bits in the block (i.e., 
everything above and beyond the one byte) are discarded.  

 
Figure  2–4: Cipher Feedback (CFB) Mode 

• Output Feedback (OFB) mode is a block cipher implementation conceptually 
similar to a synchronous stream cipher as shown in Figure  2–5. OFB prevents 
the same plaintext block from generating the same ciphertext block by using an 
internal feedback mechanism that is independent of both the plaintext and 
ciphertext bitstreams. 

 
Figure  2–5: Output Feedback (OFB) Mode 

• The Counter Mode is a confidentiality mode that features the application of 
the forward cipher to a set of input blocks, called counters, to produce a 
sequence of output blocks that are exclusive-ORed with the plaintext to produce 
the ciphertext, and vice versa as shown in Figure  2–6. The sequence of counters 
must have the property that each block in the sequence is different from every 
other block. This condition is not restricted to a single message: across all of the 



 8 

messages that are encrypted under the given key, all of the counters must be 
distinct.  

 
Figure  2–6: Counter (CTR) Mode 

2.2.2. Public-Key Cryptography 

Public-key cryptography has been said to be the most significant new development in 
cryptography in the last 300-400 years. Modern PKC was first described publicly by 
Stanford University professor Martin Hellman and graduate student Whitfield Diffie in 
1976. Their paper described a two-key crypto system in which two parties could engage in 
a secure communication over a non-secure communications channel without having to 
share a secret key. 

PKC depends upon the existence of so-called one-way functions, or mathematical 
functions that are easy to computer whereas their inverse function is relatively difficult to 
compute. Let me give you two simple examples: 

1. Multiplication vs. factorization: Suppose I tell you that I have two numbers, 
9 and 16, and that I want to calculate the product; it should take almost no 
time to calculate the product, 144. Suppose instead that I tell you that I have 
a number, 144, and I need you tell me which pair of integers I multiplied 
together to obtain that number. You will eventually come up with the 
solution but whereas calculating the product took milliseconds, factoring 
will take longer because you first need to find the 8 pair of integer factors 
and then determine which one is the correct pair.  

2. Exponentiation vs. logarithms: Suppose I tell you that I want to take the 
number 3 to the 6th power; again, it is easy to calculate 36=729. But if I tell 
you that I have the number 729 and want you to tell me the two integers that 
I used, x and y so that logx 729 = y, it will take you longer to find all 
possible solutions and select the pair that I used.  

While the examples above are trivial, they do represent two of the functional pairs that 
are used with PKC; namely, the ease of multiplication and exponentiation versus the 
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relative difficulty of factoring and calculating logarithms, respectively. The mathematical 
"trick" in PKC is to find a trap door in the one-way function so that the inverse calculation 
becomes easy given knowledge of some item of information. 

Generic PKC employs two keys that are mathematically related although knowledge of 
one key does not allow someone to easily determine the other key. One key is used to 
encrypt the plaintext and the other key is used to decrypt the ciphertext. The important 
point here is that it does not matter which key is applied first, but that both keys are 
required for the process to work (Figure  2–1-B). Because pair of keys is required, this 
approach is also called asymmetric cryptography. 

In PKC, one of the keys is designated the public key and may be advertised as widely 
as the owner wants. The other key is designated the private key and is never revealed to 
another party.  

2.2.3. Hash Functions 

Hash functions (also called message digests and one-way encryption) are algorithms 
that in some sense use no key (Figure  2–1-C). Instead, a fixed-length hash value is 
computed based upon the plaintext that makes it impossible for either the contents or 
length of the plaintext to be recovered. Hash algorithms are typically used to provide a 
digital fingerprint of a file contents, often used to ensure that the file has not been altered 
by an intruder or virus. Hash functions are also commonly employed by many operating 
systems to encrypt passwords. Hash functions, then, provide a measure of the integrity of 
a file. 

Figure  2–7 shows types of cryptography and some used algorithms in each type. 

 
Figure  2–7: Types of cryptography and its examples 

2.3. History of AES Algorithm  

On January 2, 1997, the National Institute of Standards and Technology (NIST) invited 
proposals for new algorithms for the Advanced Encryption Standard (AES) to replace the 
old Data Encryption Standard (DES). Among the 15 preliminary candidates, MARS, 
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RC6, Rijndael [7], Serpent, and Twofish were announced as the finalist candidates on 
August 9, 1999 for further evaluation. After studying all available information and public 
comments on these finalist candidates, NIST announced in October 2000 that Rijndael was 
selected as the AES algorithm. 

AES  is a symmetric block cipher that can process  data  blocks  of  128  bits,  using  
cipher  keys  with  lengths  of  128,  192,  and  256  bits. Rijndael was designed to handle 
additional block sizes and key lengths; however they are not adopted in this standard 
[9], [10]. 

Throughout the remainder of this standard, the algorithm specified herein will be 
referred to as “the AES algorithm.”  The algorithm may be used with the three different 
key lengths indicated above, and therefore these different “flavors” may be referred to as 
“AES-128”, “AES-192”, and “AES-256”. 

2.4. Mathematical Background for the AES 

The Rijndael Algorithm is based on mathematical concept of finite fields. Knowledge 
of finite fields and related terms will help in understanding structure of Rijndael and the 
motivation behind some of the optimizations. This section explains the mathematical 
concepts it presents the mathematical preliminaries in field theory and linear algebra [1]  

1. Groups An Abelian group <G, + > is defined as a set G and an operation + 
defined on the elements of G given by the following relationship: 

   : : ( , )G G G a b a b+ × → → +    

In addition, the operation + must satisfy the following conditions: 

1. Closed   : , ,a b inG a b is also inG∀ +  
2. Associative  : , , , ( ) ( )a b c inG a b c a b c∀ + + = + +  
3. Commutative  : , ,a b inG a b b a∀ + = +  
4. Neutral element : 0 ,0a a where a are inG+ =  
5. Inverse elements : , 0a inG b inG such that a b∀ ∃ + =  

2. Ring A ring <R, +,• > is defined as a set R and two operations + and •  
defined on the elements of R and which fulfill the following conditions: 

1. <R,+, • > is an Abelian group 
2. Closed   : , ,a b inG a b is also inG∀ +  
3. Associative  : , , , ( ) ( )a b c inG a b c a b c∀ + + = + +  
4. Distributive   : , , , ( ) ( ) ( )a b c inG a b c a c b c∀ + • = • + •   
5. Neutral element : 1 ,1a a where a belong to R• =  

If the operation i  is commutative, <R, +, • > is called a commutative ring. 
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3. Field A field <F, +, • > is defined as the structure that fulfills the following 
conditions: 

1. <F, +, • > is a commutative ring. 
2. <F, +> and <F0, • > are Abelian groups 
3. distributive  : , , , ( ) ( ) ( )a b c in F a b c a c b c∀ + • = • + •  
4. Neutral element  : 0 ,0a a where a are in F+ =  
5. Neutral element : , 0a in F a b∀ • =  

The number of elements in the field is called its order. 

4. Finite Fields A field that has a finite order is called a finite field. A field of 
order m exists on iff m is a prime power, i.e. nm p=  where p is a prime and n 
is an integer. Here, p is called the characteristic of the finite field. 

5. Galois Field A finite field with np  elements is called a Galois Field ( )nGF p . 
Galois Fields are named after the French mathematician Evariste Galois who 
did some early work on fields. Rijndael uses the Galois Field 8(2 )GF . 

6. Polynomials over a field A polynomial over a field is expressed as  

1 1( ) 1 1 1 0
n nb x b x b x b x bn n

− −= + + + +− − "   ( 2.1) 

Here, x is called the indeterminate of the polynomial and 
1 2 1 0, , , ,n nb b b b− − "  are called coefficients. The degree of the polynomial is 

the highest value of bi which is non-zero.  

All bytes in the AES algorithm are interpreted as finite field elements using the 
notation introduced in the above equation. Finite field elements can be added and 
multiplied, but these operations are different from those used for numbers. The following 
subsections introduce the basic mathematical concepts used in AES algorithm. 

2.4.1. Polynomial Addition 

The  addition  of  two  elements  in  a  finite  field  is  achieved  by  “adding”  the  
coefficients  for  the corresponding powers in the polynomials for the two elements.  The 
addition is performed with the XOR operation (denoted by ⊕ ) - i.e., modulo 2 - so that 
1 ⊕  1 = 0, 1 ⊕  0 = 1, and 0 ⊕  0 = 0. Consequently, subtraction of polynomials is 
identical to addition of polynomials. 

Alternatively,  addition  of  finite  field  elements  can  be  described  as  the  modulo  2  
addition  of corresponding bits in the byte. For two bytes {a7a6a5a4a3a2a1a0} and 
{b7b6b5b4b3b2b1b0}, the sum is {c7c6c5c4c3c2c1c0}, where each ci = ai  ⊕  bi   (i.e., c7 = a7 
⊕  b7, c6 = a6 ⊕  b6 ..., c0 = a0 ⊕  b0). 
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2.4.2. Polynomial Multiplication 

In the polynomial representation, multiplication in GF(28) (denoted by •) 
corresponds with the multiplication of polynomials modulo an irreducible polynomial of 
degree 8.  A polynomial is irreducible if its only divisors are one and itself.  For the AES 
algorithm, this irreducible polynomial is 

1)( 348 ++++= xxxxxm     ( 2.2) 

Or {01}{1b} in hexadecimal notation. 

The modular reduction by m(x) ensures that the result will be a binary polynomial of 
degree less than 8, and thus can be represented by a byte.  Unlike addition, there is no 
simple operation at the byte level that corresponds to this multiplication. 

The  multiplication  defined  above  is  associative,  and  the  element  {01}  is  the  
multiplicative identity.  For  any  non-zero  binary  polynomial  b(x)  of  degree  less  than  
8,  the  multiplicative inverse of b(x), denoted b-1(x), can be found as follows: the 
extended Euclidean algorithm [5] is used to compute polynomials a(x) and c(x) such that  

  1)()()()( =+ xcxmxaxb      ( 2.3)  

Hence, a(x) • b(x) mod m(x) = 1, which means 

)(mod)()(1 xmxaxb =−      ( 2.4) 

Moreover, for any a(x), b(x) and c(x) in the field, it holds that 

  )()()()())()(()( xcxaxbxaxcxbxa •+•=+• .   

It  follows  that  the  set  of  256  possible  byte  values,  with  XOR  used  as  
addition  and  the multiplication defined as above, has the structure of the finite field 
GF(28). 

2.4.3. Multiplication by x 

Multiplying the binary polynomial defined in equation ( 2.1) with the polynomial x 
results in 

8 7 6 5 4 3 2
7 6 5 4 3 2 1 0b x b x b x b x b x b x b x b x+ + + + + + +   ( 2.5)  

The result x • b(x) is obtained by reducing the above result modulo m(x), as defined in 
equation (2.1).If b7 = 0, the result is already in reduced form. If b7 = 1, the reduction is 
accomplished by subtracting (i.e., XORing) the polynomial m(x). It  follows  that  
multiplication  by  x  (i.e., {00000010} or {02})  can  be  implemented  at  the  byte  level  
as  a  left  shift  and  a  subsequent conditional  bitwise  XOR  with  {1b}. 
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This operation on bytes is denoted by xtime (). Multiplication by higher 
powers of x can be implemented by repeated application of xtime (). 

By adding intermediate results, multiplication by any constant can be implemented. 

2.4.4. Polynomials with Coefficients in GF(28) 

Four-term polynomials can be defined - with coefficients that are finite field elements - 
as: 

   3 2
3 2 1 0( )a x a x a x a x a= + + +     ( 2.6)  

This will be denoted as a word in the form [a0 , a1 , a2 , a3]. Note that the polynomials 
in this section behave somewhat differently than the polynomials used in the definition of 
finite field elements, even though both types of polynomials use the same indeterminate, 
x.  The coefficients in  this  section  are  themselves  finite  field  elements,  i.e.,  bytes,  
instead  of  bits;  also,  the multiplication  of  four-term  polynomials  uses  a  different  
reduction  polynomial,  defined  below. The distinction should always be clear from the 
context. 

To illustrate the addition and multiplication operations, let 

   01
2

2
3

3)( bxbxbxbxb +++=     ( 2.7) 

Define a second four-term polynomial. Addition is performed by adding the 
finite field coefficients of like powers of x.   This addition corresponds to an XOR 
operation between the corresponding  bytes  in  each  of  the  words  –  in  other  words,  
the  XOR  of  the  complete  word values. 

Thus, using the equations of (2.6) and (2.7), 

 )()()()()()( 0011
2

22
3

33 baxbaxbaxbaxbxa ⊕+⊕+⊕+⊕=+  ( 2.8) 

Multiplication is achieved in two steps. In the first step, the polynomial product c(x) 
= a(x) • b(x) is algebraically expanded, and like powers are collected to give 

  01
2

2
3

3
4

4
5

5
6

6)( cxcxcxcxcxcxcxc ++++++=   ( 2.9) 

Where 

0 0 0 4 3 1 2 2 1 3

1 1 0 0 1 5 3 2 2 3

2 2 0 1 1 0 2 6 3 3

3 3 0 2 1 1 2 0 3

c a b c a b a b a b
c a b a b c a b a b
c a b a b a b c a b
c a b a b a b a b

= • = • ⊕ • ⊕ •
= • ⊕ • = • ⊕ •
= • ⊕ • ⊕ • = •
= • ⊕ • ⊕ • ⊕ •

 ( 2.10)   
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The result, c(x), does not represent a four-byte word.  Therefore,  the  second  
step  of  the multiplication is to reduce c(x) modulo a polynomial of degree 4; the result 
can be reduced to a polynomial  of  degree  less  than  4.  For the AES algorithm, this is 
accomplished with the polynomial x4 + 1, so that 

   4mod4 )1mod( ii xxx =+     ( 2.11) 

The  modular  product  of  a(x)  and  b(x),  denoted  by  a(x)  ⊗  b(x),  is  given  by  the  
four-term polynomial d(x), defined as follows: 

   01
2

2
3

3)( dxdxdxdxd +++=    ( 2.12) 

 With 

  

0 0 0 3 1 2 2 1 3

1 1 0 0 1 3 2 2 3

2 2 0 1 1 0 2 3 3

3 3 0 2 1 1 2 0 3

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

d a b a b a b a b
d a b a b a b a b
d a b a b a b a b
d a b a b a b a b

= • ⊕ • ⊕ • ⊕ •
= • ⊕ • ⊕ • ⊕ •
= • ⊕ • ⊕ • ⊕ •
= • ⊕ • ⊕ • ⊕ •

   ( 2.13) 

When  a(x)  is  a  fixed  polynomial,  the  operation  defined  in  equation  ( 2.12)  can  be  
written  in matrix form as: 

0 0 1 03 2

21 1 10 3

1 0 32 2 2

2 13 3 0 3

d a a ba a
ad a ba a

a a ad a b
a ad a a b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   ( 2.14)  

Because x 4+ 1 is not an irreducible polynomial over GF(28), multiplication by a fixed 
four-term polynomial is not necessarily invertible. However, the AES algorithm specifies 
a fixed four-term polynomial that does have an inverse (which is required for the 
decryption process): 

3 2( ) {03} +{01} + {01} {02}a x x x x= +     ( 2.15)  

  -1 3 2( ) {0 } {0 } +{09} {0 }a x b x d x x e= + +     ( 2.16) 

2.5. The AES Cipher/ Decipher Algorithm 

The Rijndael proposal for AES defined a cipher in which the block length and the key 
length can be independently specified to be 128, 192, or 256 bits. The AES specification 
uses the same three key size alternatives but limits the block length to 128 bits. A number 
of AES parameters depend on the key length (Table  2–1). In the description of this 
section, we assume a key length of 128 bits, which is likely to be the one most commonly 
implemented [7], [10]. 



 15

Table  2–1: AES Parameters 
Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256 

Plaintext block size (words/bytes/bits) 4/16/128 4/16/128 4/16/128 

Number of rounds 10 12 14 

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128 

Expanded key size (words/bytes) 44/176 52/208 60/240 

Rijndael was designed to have the following characteristics: 

• Resistance against all known attacks 
• Speed and code compactness on a wide range of platforms 
• Design simplicity 

Figure  2–8 shows the overall structure of AES. The input to the encryption and 
decryption algorithms is a single 128-bit block. In FIPS PUB 197, this block is depicted 
as a square matrix of bytes. This block is copied into the State array, which is modified at 
each stage of encryption or decryption. After the final stage, State is copied to an output 
matrix. These operations are depicted in Figure  2–8-a. Similarly, the 128-bit key is 
depicted as a square matrix of bytes. This key is then expanded into an array of key 
schedule words; each word is four bytes and the total key schedule is 44 words for the 
128-bit key (Figure  2–8-b). Note that the ordering of bytes within a matrix is by column. 
So, for example, the first four bytes of a 128-bit plaintext input to the encryption cipher 
occupy the first column of the in matrix, the second four bytes occupy the second column, 
and so on. Similarly, the first four bytes of the expanded key, which form a word, occupy 
the first column of the w matrix. 
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Figure  2–8: AES Encryption and Decryption 

Before delving into details, we can make several comments about the overall AES 
structure: 

1. One noteworthy feature of this structure is that it is not a Feistel structure. In the 
classic Feistel structure, half of the data block is used to modify the other half of 
the data block, and then the halves are swapped. Two of the AES finalists, 
including Rijndael, do not use a Feistel structure but process the entire data block in 
parallel during each round using substitutions and permutation. 

2. The key that is provided as input is expanded into an array of forty-four 32-bit 
words, w[i]. Four distinct words (128 bits) serve as a round key for each round; 
these are indicated in Figure  2–8. 

3. Four different stages are used, one of permutation and three of substitution: 
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• SubBytes(): Uses an S-box to perform a byte-by-byte substitution of the 
block 

• ShiftRows(): A simple permutation 
• MixColumns(): A substitution that makes use of arithmetic over GF(28) 
• AddRoundKey(): A simple bitwise XOR of the current block with a 

portion of the expanded key 

4. The structure is quite simple. For both encryption and decryption, the cipher begins 
with an AddRoundKey stage, followed by nine rounds that each includes all four 
stages, followed by a tenth round of three stages. Figure  2–9 depicts the structure of 
a full encryption round.  

 
Figure  2–9: AES Encryption Round 

5. Only the AddRoundKey stage makes use of the key. For this reason, the cipher 
begins and ends with an AddRoundKey stage. Any other stage, applied at the 
beginning or end, is reversible without knowledge of the key and so would add no 
security. 

6. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would 
not be formidable. The other three stages together provide confusion, diffusion, and 
nonlinearity, but by themselves would provide no security because they do not use 
the key. We can view the cipher as alternating operations of XOR encryption 
(AddRoundKey) of a block, followed by scrambling of the block (the other three 
stages), and followed by XOR encryption, and so on. This scheme is both efficient 
and highly secure. 

7. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and 
MixColumns stages, an inverse function is used in the decryption algorithm. For 
the AddRoundKey stage, the inverse is achieved by XORing the same round key to 
the block, using the result that A ⊕ A ⊕  B = B. 
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8. As with most block ciphers, the decryption algorithm makes use of the expanded 
key in reverse order. However, the decryption algorithm is not identical to the 
encryption algorithm. This is a consequence of the particular structure of AES. 

9. Once it is established that all four stages are reversible, it is easy to verify that 
decryption does recover the plaintext. Figure  2–9 lays out encryption and 
decryption going in opposite vertical directions. At each horizontal point (e.g., the 
dashed line in the figure), State is the same for both encryption and decryption. 

10. The final round of both encryption and decryption consists of only three stages. 
Again, this is a consequence of the particular structure of AES and is required to 
make the cipher reversible. 

We now turn to a discussion of each of the four stages used in AES. For each stage, we 
describe the forward (encryption) algorithm, the inverse (decryption) algorithm, and the 
rationale for the stage. This is followed by a discussion of key expansion. As was 
mentioned in Sec.  2.4, AES uses arithmetic in the finite field GF(28), with the irreducible 
polynomial m(x) = x8 + x4 + x3 + x + 1.  

2.5.1. SubBytes Transformation (Forward and Inverse Transformations) 

The forward substitute byte transformation, called SubBytes(), is a simple table lookup 
(Figure  2–10-a). AES defines a 16 x 16 matrix of byte values, called an S-box (Table  2–2-
a), that contains a permutation of all possible 256 8-bit values. Each individual byte of 
State is mapped into a new byte in the following way: The leftmost 4 bits of the byte are 
used as a row value and the rightmost 4 bits are used as a column value. These row and 
column values serve as indexes into the S-box to select a unique 8-bit output value.  

 
Figure  2–10: AES Byte level operations 
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Table  2–2: AES S-Boxes 

 

The S-box is constructed in the following fashion: 

1. Initialize the S-box with the byte values in ascending sequence row by row. The 
first row contains {00}, {01}, {02} …, {0F}; the second row contains {10}, {11}, 
etc.; and so on. Thus, the value of the byte at row x, column y is {xy}. 

2. Map each byte in the S-box to its multiplicative inverse in the finite field GF(28); 
the value {00} is mapped to itself. 

3. Consider that each byte in the S-box consists of 8 bits labeled (b7, b6, b5, b4, b3, b2, 
b1, b0). Apply the following transformation to each bit of each byte in the S-box: 

( 4)mod8 ( 5)mod8 ( 6)mod8 ( 7)mod8'i i i i i i ib b b b b b c+ + + += + + + + +   ( 2.17) 

Where ci is the ith bit of byte c with the value {63}; that is, (c7c6c5c4c3c2c1c0) = 
(01100011). The prime (') indicates that the variable is to be updated by the value on the 
right. The AES standard depicts this transformation in matrix form as follows: 



 20 

'
00

'
11

'
22

'
33

'
44

'
55

'
66

'
77

1 0 0 0 1 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 0 1
0 0 0 1 1 1 1 1 0

bb
bb
bb
bb
bb
bb
bb
bb

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ = +⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

   ( 2.18) 

Equation ( 2.18) has to be interpreted carefully. In ordinary matrix multiplication, each 
element in the product matrix is the sum of products of the elements or one row and one 
column. In this case, each element in the product matrix is the bitwise XOR of products of 
elements of one row and one column. Further, the final addition shown in Equation ( 2.18) 
is a bitwise XOR. 

The inverse substitute byte transformation, called InvSubBytes(), makes use of the 
inverse S-box shown in Table  2–2-b. Note, for example, that the input {2A} produces the 
output {95} and the input {95} to the S-box produces {2A}. The inverse S-box is 
constructed by applying the inverse of the transformation in equation (2.17) followed by 
taking the multiplicative inverse in GF(28). The inverse transformation is: 

( 2)mod8 ( 5)mod8 ( 7)mod8'i i i i i ib b b b b d+ + += + + + +   ( 2.19) 

Where byte d = {05}, or 00000101. We can depict this transformation as follows: 

'
00

'
11

'
22

'
33

'
44

'
55

'
66

'
77

0 0 1 0 0 1 0 1 1
1 0 0 1 0 0 1 0 1
0 1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0 0
0 1 0 1 0 0 1 0 0
0 0 1 0 1 0 0 1 1
1 0 0 1 0 1 0 0 1
0 1 0 0 1 0 1 0 0

bb
bb
bb
bb
bb
bb
bb
bb

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ = +⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

   ( 2.20) 

2.5.2. ShiftRows Transformation (Forward and Inverse Transformations)  

The forward shift row transformation, called ShiftRows(), is depicted in Figure  2–11-a. 
The first row of State is not altered. For the second row, a 1-byte circular left shift is 
performed. For the third row, a 2-byte circular left shift is performed. For the fourth row, 
a 3-byte circular left shift is performed. 
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Figure  2–11: AES Row and Column Properties 

The inverse shift row transformation, called InvShiftRows(), performs the circular 
shifts in the opposite direction for each of the last three rows, with a one-byte circular 
right shift for the second row, and so on. 

2.5.3. MixColumns Transformation (Forward and Inverse Transformations) 

The forward mix column transformation, called MixColumns() transformation  
operates  on  the  State  column-by-column,  treating  each column  as  a  four-term  
polynomial   as  described  in Sec. 2.4.4. The columns are considered as polynomials over 
GF(28) and multiplied modulo x4  + 1 with a fixed polynomial a(x), given by equation 
( 2.15) 

3 2( ) {03} +{01} + {01} {02}a x x x x= +  

As described in Sec. 2.4.4, this can be written as a matrix multiplication. Let: 

  ' ( ) ( ) ( )s x a x s x= ⊗  

 

'
0, 0,

'
1, 1,

'
2, 2,

'
3, 3,

02 03 01 01
01 02 03 01

0
01 01 02 03
03 02 02 01

c c

c c

c c

c c

s s

s s
for c Nb

s s

s s

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ≤ <⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

  ( 2.21)   
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As a result of this multiplication, the four bytes in a column are replaced by the 
following: 

'
0, 0, 1, 2, 3,

'
1, 0, 1, 2, 3,

'
2, 0, 1, 2, 3,

'
3, 0, 1, 2, 3,

({02} ) ({03} )

({02} ) ({03} )

({02} ) ({03} )

({03} ) ({02} )

c c c c c

c c c c c

c c c c c

c c c c c

s s s s s

s s s s s

s s s s s

s s s s s

= • ⊕ • ⊕ ⊕

= ⊕ • ⊕ • ⊕

= ⊕ ⊕ • ⊕ •

= • ⊕ ⊕ ⊕ •

   ( 2.22) 

The inverse mix column transformation, called InvMixColumns() is the inverse of the 
MixColumns() transformation. InvMixColumns() operates on the State column-by-
column, treating each column as a four- term  polynomial   as  described  in  Sec. 2.4.4. 
The columns are considered as polynomials over GF(28) and multiplied modulo x4  + 1 with 
a fixed polynomial a-1(x), given by equation ( 2.16) 

  -1 3 2( ) {0 } {0 } +{09} {0 }a x b x d x x e= + +  

As described in Sec. 4.3, this can be written as a matrix multiplication. Let 

  ' 1( ) ( ) ( )s x a x s x−= ⊗  

'
0, 0,

'
1, 1,

'
2, 2,

'
3, 3,

0 0 0 09
09 0 0 0

0
0 09 0 0
0 0 09 0

c c

c c

c c

c c

s se b d
s se b d

for c Nb
d e bs s
b d es s

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ≤ <⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 ( 2.23)   

As a result of this multiplication, the four bytes in a column are replaced by the 
following: 

  

'
0, 0, 1, 2, 3,

'
1, 0, 1, 2, 3,

'
2, 0, 1, 2, 3,

'
3, 0, 1, 2,

({0 } ) ({0 } ) ({0 } ) ({09} )

({09} ) ({0 } ) ({0 } ) ({0 } )

({0 } ) ({09} ) ({0 } ) ({0 } )

({0 } ) ({0 } ) ({09} )

c c c c c

c c c c c

c c c c c

c c c c

s e s b s d s s

s s e s b s d s

s d s s e s b s

s b s d s s

= • ⊕ • ⊕ • ⊕ •

= • ⊕ • ⊕ • ⊕ •

= • ⊕ • ⊕ • ⊕ •

= • ⊕ • ⊕ • 3,({0 } )ce s⊕ •

  ( 2.24) 

2.5.4. AddRoundKey Transformation (Forward and Inverse Transformations) 

In the forward add round key transformation, called AddRoundKey, the 128 bits of 
State are bitwise XORed with the 128 bits of the round key. As shown in Figure  2–10-b, 
the operation is viewed as a column wise operation between the 4 bytes of a State column 
and one word of the round key; it can also be viewed as a byte-level operation.  
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2.6. AES Key Expansion Algorithm 

The AES key expansion algorithm takes as input a 4-word (16-byte) key and produces 
a linear array of 44 words (176 bytes). This is sufficient to provide a 4-word round key for 
the initial AddRoundKey stage and each of the 10 rounds of the cipher. The Figure below 
shows pseudo-code describes the expansion: 

 
Figure  2–12: Key Expansion Pseudo-code 

 The key is copied into the first four words of the expanded key. The remainder of the 
expanded key is filled in four words at a time. Each added word w[i] depends on the 
immediately preceding word, w[i 1], and the word four positions back, w[i 4]. In three out 
of four cases, a simple XOR is used. For a word whose position in the w array is a 
multiple of 4, a more complex function is used. Figure  2–13 illustrates the generation of 
the first eight words of the expanded key, using the symbol g to represent that complex 
function. The function g consists of the following sub-functions: 

1. RotWord performs a one-byte circular left shift on a word. This means that an input 
word [b0, b1, b2, b3] is transformed into [b1, b2, b3, b0]. 

2. SubWord performs a byte substitution on each byte of its input word, using the S-
box (Table  2–2-a). 

3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j]. 



 24 

 
Figure  2–13: AES Key Expansion 

The round constant is a word in which the three rightmost bytes are always 0. Thus the 
effect of an XOR of a word with Rcon is to only perform an XOR on the leftmost byte of 
the word. The round constant is different for each round and is defined as Rcon[j] = 
(RC[j], 0, 0, 0), with RC[1] = 1, RC[j] = 2 · RC[j - 1] and with multiplication defined 
over the field GF(28). The values of RC[j] in hexadecimal are shown in Table  2–3 

Table  2–3: Rcon [j] Values 
j 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

2.7. Equivalent Inverse Cipher 

As was mentioned, the AES decryption cipher is not identical to the encryption cipher 
(Figure  2–8). That is, the sequence of transformations for decryption differs from that for 
encryption, although the form of the key schedules for encryption and decryption is the 
same. This has the disadvantage that two separate software or firmware modules are 
needed for applications that require both encryption and decryption. There is, however, an 
equivalent version of the decryption algorithm that has the same structure as the 
encryption algorithm. The equivalent version has the same sequence of transformations as 
the encryption algorithm (with transformations replaced by their inverses). To achieve this 
equivalence, a change in key schedule is needed. 

Two separate changes are needed to bring the decryption structure in line with the 
encryption structure. An encryption round has the structure SubBytes, ShiftRows, 
MixColumns and AddRoundKey. The standard decryption round has the structure 
InvShiftRows, InvSubBytes, AddRoundKey and InvMixColumns, Thus, the first two 
stages of the decryption round need to be interchanged, and the second two stages of the 
decryption round need to be interchanged. 
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2.7.1. Interchanging InvShiftRows and InvSubBytes 

InvShiftRows affects the sequence of bytes in State but does not alter byte contents and 
does not depend on byte contents to perform its transformation. InvSubBytes affects the 
contents of bytes in State but does not alter byte sequence and does not depend on byte 
sequence to perform its transformation. Thus, these two operations commute and can be 
interchanged. For a given State Si, 

InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)] 

2.7.2. Interchanging AddRoundKey and InvMixColumns 

The transformations AddRoundKey and InvMixColumns do not alter the sequence of 
bytes in State. If we view the key as a sequence of words, then both AddRoundKey and 
InvMixColumns operate on State one column at a time. These two operations are linear 
with respect to the column input. That is, for a given State Si and a given round key wj: 

InvMixColumns (Si ⊕ wj) = [InvMixColumns (Si)] ⊕  [InvMixColumns (wj)] 

Figure  2–14 illustrates the equivalent decryption algorithm. 

 
Figure  2–14: Equivalent Inverse Cipher 
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C h a p t e r  3  

HEURISTIC DESIGN OF RIJNDAEL S-BOX 

Cipher systems are a prime target for an attacker wishing to compromise the 
information being protected by a security system. In line with the three forms of 
protection mentioned above, the typical motives of an attacker include seeking to reveal 
confidential information, to illicitly and surreptitiously modify information, and to falsely 
claim an identity. In addition, an attacker may seek to remove evidence, or even insert 
false evidence, that a particular event or transaction has occurred. Compromising a cipher 
system which endeavors to protect this information can either directly enable these actions 
to occur, or indirectly weaken another part of the system to enable these actions to later 
occur. Powerful existing cryptanalytic attacks against cipher systems have proved to be 
successful under the right conditions [11]. 

The overall strength of a security system is dependent on the strength of the individual 
components, such as the authentication system, the key management system, the data 
storage system, the cipher system and the policies and procedures, to name a few. 
Similarly, the overall strength of a cipher system is dependent on the strength of its 
individual components. A weakness in any of the individual components may lead to a 
catastrophic failure in the whole cipher.  

Boolean functions and substitution boxes (s-boxes) are two of the most common and 
critical components of cryptographic cipher systems. These components are directly 
related by function quantity. That is, a substitution box is typically comprised of multiple 
single output Boolean functions, but if it maps to only one bit, is identical to a Boolean 
function. 

Boolean functions are often utilized in the keystream generation process of stream ciphers 
as they are highly suitable for receiving bits of linear feedback shift registers as input in 
order to combine them as securely as possible to produce the single keystream. Further, 
Boolean functions are capable of exhibiting the combination of cryptographic properties 
necessary to resist the typical types of attacks which seek to reveal part or all of the 
keystream. 

The most common type of cipher system which employs s-boxes are block ciphers. As 
a block cipher system encrypts its data in fixed length blocks, s-boxes are a natural 
component of such a system. They provide a means of substituting multiple bits (part of 
or a whole block) of data for a completely different set of output bits. More importantly is 
the use of strong s-boxes (those which possess good cryptographic properties) so the 
substitution signifies a complex relationship between input and output bits of the s-box. 
The typical use of s-boxes in the cipher's iterative round function serves to increase the 
effort needed to exploit any statistical structure in the data. 

Boolean functions and s-boxes will only be able to contribute to the security of a cipher 
by possessing good measures of desirable cryptographic properties. Obtaining strong 



 27

Boolean functions and s-boxes for incorporation into cryptographic cipher systems to 
enhance their security is an ongoing research problem. This is particularly so as 
cryptanalytic techniques become more sophisticated, and with the advancement of 
computing technology which works both for and against cryptographic security. The size 
of Boolean functions and the dimension of s-boxes have a significant bearing on security, 
though larger functions generally require more computational effort in order to exploit 
weaknesses, so too is the computational effort increased when attempting to obtain large 
functions with exceptionally good measures of desirable cryptographic properties. This 
adds an extra element of difficulty to the research problem. 

In this chapter we propose a new AES S-box with good cryptographic properties such 
as high nonlinearity and low autocorrelation. 

3.1. Boolean Function and S-box Theory 

 This section provides some definitions of relevance to Boolean functions with 
cryptographic application. We denote the substitution table of an n-input k-output 
Boolean function by : n kf B B→ , mapping each combination of n Boolean input values 
to some combination of k Boolean output values [12]. 

For single-output functions if the number of combinations mapping to 0 is the same as 
the number mapping to 1 then the function is said to be balanced. For the multiple-output 
case, if each k-bit output value appears the same number of times, we say that the function 
is regular.  

For the single-output case the substitution table is generally referred to as a ‘truth 
table’. The polarity truth table is a particularly useful representation for our purposes. It is 
defined by ( )ˆ( ) ( 1) f xf x = − . Two functions f and g are said to be uncorrelated 
when ˆ ˆ( ) ( ) 0

nx B
f x g x

∈

=∑ . If so, if you try to approximate f by using g, you will be right 

half the time and wrong half the time. 

An area of particular importance for cryptanalysts is the ability to approximate a 
function f by a simple linear function. One of the cryptosystem designer’s tasks is to make 
such approximation as difficult as possible (by making the function f suitably nonlinear). 
Linearity is a form of structure crypto designers clearly strive to avoid. One form of attack 
that exploits linearity is known as linear cryptanalysis, introduced by Matsui [13]. It has 
attracted a great deal of attention. Another form of structure that is to be avoided is 
differential structure. Essentially, particular differences in input words (difference defined 
by simple bitwise XOR) may be associated with particular differences of output words 
(again defined by bitwise XOR) with some strong bias (i.e. the output difference is not 
uniform for a particular input difference). This can often be exploited by a form of attack 
known as differential cryptanalysis, introduced by Biham and Shamir [14], [15]. 

Substitution boxes are essentially n-input k-output functions. These can be viewed as a 
combination of k individual single-output Boolean functions. Several important security 
criteria are actually defined in terms of single-output function criteria and so it is essential 
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to understand first the basic Boolean function definitions and concepts. We then extend 
these to cater for the multiple-output case. 

3.2. Cryptographic Criteria for Single-output Functions and S-boxes 

Two formal criteria have been defined for the single-output case to capture some 
aspects of resilience to the sorts of attacks indicated above [11, 12]. These are high 
nonlinearity and low autocorrelation and are defined below together with other 
terminology used in this chapter. 

Linear Boolean Function: A linear Boolean function f, selected by nBω ∈ , is denoted 
by 1 1 1 1( ) n nL x x x xω ω ω ω= ⊕ ⊕… , Where i ixω denotes the bitwise AND of the ith bits of 
ω and x, and ⊕ denotes bitwise XOR. 

Affine Boolean Function: The set of affine functions is the set of linear functions and 
their complements , ( ) ( ) ,cA x L x c c Bω ω= ⊕ ∈  

Walsh Hadamard Transform: For a Boolean function f the Walsh Hadamard 
Transform f̂F is defined by ˆ ˆˆ ( ) ( ) ( )

n
f

x B

F f x l xωω
∈

= ∑ . We denote the maximum absolute 

value taken by the transform by max
ˆ( ) max ( )

n f
B

WH f F
ω

ω
∈

= . It is related to the nonlinearity 

of f. 

Nonlinearity: The nonlinearity Nf of a Boolean function f is its minimum distance to 

any affine function. It is given by max
1 (2 ( ))
2

n
fN WH f= − . 

Parseval’s Theorem: This states that 2ˆ( ( )) 2
n

n

B

F w
ω∈

=∑ . A consequence of this result is 

that / 2
max ( ) 2nWH f ≥ . 

Autocorrelation Transform: The autocorrelation transform of a Boolean function f is 
given by ˆ ˆˆ ( ) ( ) ( )f

x
r s f x f x s= ⊕∑ . We denote the maximum absolute value in the 

autocorrelation spectra of a function f by ACf , i.e., ˆ ˆmax ( ) ( )f s
x

AC f x f x s= ⊕∑ . Here x 

and s range over Bn. 

Extensions to S-boxes: For each k-output S-box, we can extract a single-output 
Boolean function by simply XORing some subset of the output bits together. If 

( ) : n kf x B B→ is an n-input k-output S-box then each kBβ ∈  defines a function that is a 
linear combination ( )f xβ of the m outputs of f. This is given by     
   1 1 2 2( ) ( ) ( ) ( )k kf x f x f x f xβ β β β= ⊕ ⊕…   
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For each such function f β the Walsh-Hadamard values ˆ ( )Fβ ω and autocorrelation 
values ( )r sβ are defined in the usual way. (Each such function is now a single-output 
function defined over the n inputs.) There are 2k−1 non-trivial functions obtainable in this 
way. The notions of non-linearity and autocorrelation are readily extended to the multiple 
output case. For the k-output case the non-linearity is the worst (lowest) non-linearity of 
all the 2k−1 non-trivial single output functions obtained as indicated above. Similarly, the 
autocorrelation is the worst (highest) over all such derived single-output functions. 

3.3. Cost Functions 
3.3.1. Traditional Cost Functions 

In virtually all work done so far existing optimization based work aimed at producing 
highly nonlinear functions has generally used nonlinearity itself as the fitness function, 
i.e. the fitness of a function f on n input variables is given by     

max
1( ) (2 ( ))
2

N
ffitness f N WH f= = −    ( 3.1) 

Or, when viewed as a minimization problem, the cost function is given by 

max
ˆcos ( ) ( ) max ( )t f WH f Fω ω= =     ( 3.2) 

Similarly, with low autocorrelation as the target, the autocorrelation itself has been 
used as the cost function, i.e. the cost function is given by 

0 0
ˆ ˆ ˆcos ( ) max ( ) ( ) max ( )

s sx
t f f x f x s r s

≠ ≠
= + =∑   ( 3.3) 

Previous optimization approaches to evolving Boolean functions with desirable 
cryptographic properties have been generalized to the multiple-output case. Millan has 
compared random generation and hill-climbing as means of evolving highly nonlinear 
bijective S-boxes [16]. Burnett et al. have investigated the use of genetic algorithms and 
hill-climbing to evolve regular S-boxes [17]. Both high nonlinearity and low 
autocorrelation were targets. The fitness and cost measures for an S-box were the 
nonlinearity and autocorrelation values of that S-box. For the S-box case, the researchers 
above have used extensions of the basic definitions as cost functions. For non-linearity the 
cost function was: 

,
ˆcos ( ) max ( )

k nB B
t f Fβ

β ω
ω

∈ ∈
=     ( 3.4)   
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For autocorrelation the cost function was:     

\{0 }, \{0 }
ˆcos ( ) max ( )

k k n nB s B
t f r sβ

β∈ ∈
=    ( 3.5)  

3.3.2. Spectrum Based Cost Functions 

Traditional optimization work in non-linearity attempts to improve the non-linearity 
directly. Equivalently (see the definition of Nf  in Section  3.3.1), it seeks to minimize the 
cost function 

   maxcos ( ) ( )t f WH f=  

Essentially, the search considers the effect of a move only on those extreme (or near 
extreme) values of the Walsh Hadamard Transforms ˆ ( )F ω for the current solution. A 
more indirect approach can be derived by considering Parseval’s theorem below. 

    2 2ˆ( ( )) 2
n

n

B

F
ω

ω
∈

=∑  

This constrains max
ˆ( ) max | ( ) |

nB
WH f F
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when for each 2ˆ, ( ) 2
n

Fω ω = . In practice this bound may be impossible. When 
some ˆ| ( ) |F ω are greater than this ideal bound, Parseval’s theorem ensures that 
some ˆ| ( ) |F ω  must be smaller than it. Thus, it would appear that attempting to restrict the 
spread of absolute values achieved is well-motivated. This suggests a cost function of the 
following form: 
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n

Rn

B

t f F
ω

ω
∈

= −∑     ( 3.6) 

The value R is positive and can be varied. Note that it does not necessarily follow that 
a reduction in our cost function gives rise to an increase in non-linearity but if the range of 
absolute values is small, then the maximum value will be small too.  

The above cost function could be written as: 

ˆ ˆcos ( ) ( )
n

R

B

t f F X
ω

ω
∈

= −∑     ( 3.7)  

Where X and R are real-valued parameters. It is difficult to predict what the best such 
parameter values should be and considerable experimentation is needed. However, as 
indicated above, they have produced some exceptional results (effectively equaling the 
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best results of theoreticians for functions of 8-inputs or less). A similar cost function 
obtained by substituting ˆ ( )fr s  for ˆ ( )fF ω  was later used to similar effect [18], [19]. 

Since spectrum-based approaches generated interesting results for the single-output 
case an obvious question to pose is ‘Can the spectrum-based approaches be generalized to 
allow S-boxes to be evolved with desirable properties?’ Two cost functions can now be 
defined for use in S-box evolution. A cost function based on Walsh-Hadamard spectra is 
given by 

ˆ ˆcos ( ) ( )
k n

R

B B

t f F Xβ
β ω

ω
∈ ∈

= −∑ ∑    ( 3.8) 

And a similar cost function based on autocorrelation spectra is given by 

ˆ ˆcos ( ) ( )
k n

R

B s B

t f r s X
β

β∈ ∈

= −∑ ∑    ( 3.9) 

The single output cost functions have been applied to each function defined as a linear 
combination of the outputs and the results summed over all such combinations. 

3.4. Optimization Algorithms of a Single Boolean Function  

The two main techniques which have been used for this purpose by researchers in the 
field are [11]: 

1. Heuristic techniques; and 
2. Algebraic constructions. 

Heuristic techniques are driven by a directed search algorithm typically searching in a 
localized area from a specified starting point. Their use is more frequent for searching in 
large spaces in order to find a large number of solutions which are satisfactory, but 
generally not optimal. For this reason, heuristic techniques are often applied to difficult 
combinatorial problems. Well known heuristic techniques include Simulated Annealing 
[43], Tabu Search [31], Genetic Algorithms [37] and Hill Climbing techniques [70]. 

Algebraic constructions rely on proven mathematical relationships holding for a 
generalized construction of functions. Whilst algebraic constructions have been shown to 
generally produce functions with the most optimum combinations of properties, they are 
not typically designed to produce a great number of such functions. Further, the existence 
of inherent weaknesses in functions produced by algebraic construction is a valid concern. 
In contrast, the vast amount of experimentation so far performed using heuristic 
techniques has shown that, for large input spaces, these techniques are generally unable to 
generate optimal functions. This is due to the nature of the technique as simply being a 
way to non-deterministically search through a search space in a directed fashion. Thus, as 
the number of input variables increases by one, the number of functions in the space 
increases by a factor of 22N

 and the probability of discovering optimal functions decreases. 
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However, because heuristic techniques involve directed search methods, they have been 
shown to produce consistent results in finding functions with good properties, and unlike 
algebraic constructions, are able to produce a large number of such functions. For this 
reason, the approach taken in this section has been primarily focused on the application of 
heuristic techniques. 

3.4.1. Hill Climbing 

The basic hill climbing technique involves searching, at each iteration, for elements of 
a function to modify which will result in an improvement in the results already obtained. 
At the end of the process, it is expected that the final output will represent the best 
solution obtainable. 

For cryptographic applications used in this research, hill climbing is referred to as 
being the process whereby one or more distinct elements in the truth table of a function 
are complemented in order to make iterative improvements to the cryptographic properties 
or fitness of the function. The fitness of a function is the measure of a particular 
cryptographic property or properties exhibited by the function. In [20], the authors 
categorize the fitness function into either weak or strong acceptance. A weak acceptance 
condition will accept an incremental change in the truth table even if such a change 
produces no increase in the fitness of the new function, provided that there is no decrease 
in the fitness. A strong acceptance condition, on the other hand, will only accept an 
incremental change in the truth table when such a change produces an increase in the 
fitness of the new function. Thus, the only time an increase in the fitness is forced is when 
a strong acceptance condition is imposed. In addition to relying on this measure as a 
criterion for deciding whether to accept or reject functions to be input into the next 
iteration of the process, hill climbing requires the formation of improvement sets. 
Improvement sets are defined according to the fitness function which is utilized in the hill 
climbing process. 

The hill climbing approach to Boolean function design was introduced in [21] as a 
mean of improving the nonlinearity of a given Boolean function by making well chosen 
alterations of one or two places of the truth table. It is easy to show that any single truth 
table change causes ( ) { 2,2}WHT ωΔ ∈ −  for all ω. Any two changes cause 

( ) { 4,0,4}WHT ωΔ ∈ − . When the two function values satisfy 1 2( ) ( )f x f x≠ then the 
Hamming weight will not change. By starting with a balanced function, we can hill climb 
to a more nonlinear balanced function.  

Paper [21] has introduced the requirements for improvement of the WHT for one and 
two changes to the truth table. Here we briefly give a more general derivation of the rules 
for the two change case (to keep function balancing). 

Consider a given Boolean function f(x) in polarity truth table form ˆ( )f x . Now let the 
truth table output be complemented for two distinct inputs x1 and x2. We have 

ˆˆ ( ) ( ) {1, 2}i ig x f x for i= − ∈ , and ˆˆ ( ) ( )g x f x=  for other x. Now consider the WHT of 
g(x).    
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We will naturally define the change in the WHT value for all ω as 

ˆ ˆ( ) ( ) ( )WHT G Fω ω ωΔ = − . 

It follows directly that  

  1 1 2 2
ˆ ˆˆ( ) 2 ( ) ( ) 2 ( ) ( ).WHT f x L x f x L xω ωωΔ = − −  

This result can be used directly to quickly update the WHT each iteration of a 2-step 
hill climbing program. It is now a straightforward matter to determine the conditions 
required for the choice of (x1, x2) to complement so that the WHT values change as 
required. It is clear that two changes ensure ( ) { 4,0,4}WHT ωΔ ∈ − . As in all hill climbing 
methods we assume 1 2( ) ( )f x f x≠  has been fixed, so that Hamming weight doesn’t 
change. We have 

  

( ) 4 ( ) ( ) {1,2},
( ) 4 ( ) ( ) {1,2}
( ) 0 ( ) ( )

( ) ( ) {1,2}.

WHT i i

WHT i i

WHT i i

i i

both f x L x for i
both f x L x for i and
one f x L x and another

f x L x for i

ω

ω

ω

ω

ω
ω
ω

Δ = − ⇔ = ∈
Δ = + ⇔ ≠ ∈
Δ = ⇔ =

≠ ∈

  

This specifies the tests for all conditions of interest in 2-step hill climbing. When we 
require definite improvement of the WHT and wish to maintain Hamming weight, then 
we may complement the truth table output for any pair (x1, x2) that satisfies all the 
following conditions: 

1 2

max

max

max

( ) ( ) ( )
ˆ( ) ( ) ( ) {1,2}, { : ( ) }
ˆ( ) ( ) ( ) {1,2}, { : ( ) }

ˆ( ) ( ) ( ) {1,2}, { : ( ) ( 4)}

( ) ( ) (

i i

i i

i i

i i

i f x f x

ii both f x L x for i for all F WH

iii both f x L x for i for all F WH

iv not both f x L x for i for all F WH

v not both f x L x

ω

ω

ω

ω

ω ω

ω ω

ω ω

≠

= ∈ =

≠ ∈ = −

≠ ∈ = −

= max
ˆ) {1,2}, { : ( ) ( 4)}for i for all F WHω ω∈ = − −

 

Figure  3–1 shows the Boolean function hill climbing algorithm. 
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Figure  3–1: Boolean function Hill Climbing Algorithm 

A similar hill climbing algorithm [20] could be used to improve the autocorrelation of 
Boolean function. 

Figure  3–2 shows the nonlinearity achieved by the hill climbing algorithm for 100 
iterations. One can see that the maximum achievable nonlinearity achieved using this 
algorithm is 112.  

 
Figure  3–2: Hill Climbing Algorithm output (Nonlinearity vs Iteration number) 

3.4.2. Simulated Annealing 

In 1983 Kirkpatrick et al. [22] proposed a new search technique based on the cooling 
processes of molten metals. The technique was simulated annealing. It has proved to be 
an extraordinarily simple, yet powerful, heuristic search technique. It merges hill-
climbing with the probabilistic acceptance of non-improving moves. The basic algorithm 
is shown in Figure  3–1. 

0 10 20 30 40 50 60 70 80 90 100 98 

100 

102 

104 

106 

108 

110 

112 

Iteration number

Nonlinearity 

1. Generate a random Boolean function f and calculate its 
Walsh Hadamard transform. 

2. By parsing the WHT find the values of ω which belong to 
the groups max max max max, , ( 4), ( 4).WH WH WH WH− − − −  

3. For i =1 to 2n-1 
For j = i+1 to 2n 

   If   f(i) ≠f(j) 
    g=f; 
    g(i)=f(j); 
    g(j)=f(i); 

if conditions ii, iii, iv, v satisfied 
     f =g; 
     Goto 2; 

4. Go to step 1 until no improvement occurs.  
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Figure  3–3: Basic Simulated Annealing for Minimization Problems 

The search starts at some initial state S=S0. There is a control parameter T known as 
the temperature. This starts 'high' at T0 and is gradually lowered. At each temperature, a 
number MIL (Moves in Inner Loop) of moves to new states are attempted. A candidate 
state Y is randomly selected from the neighborhood N(S) of the current state. The change 
in value, δ, of f is calculated. If it improves the value of f(s) (i.e. if the δ<0 for a 
minimization problem) then a move to that state is taken (S=Y); if not, then it is taken 
with some probability. The worse a move is, the less likely it is to be accepted. The lower 
the temperature T the less likely is a worsening moves to be accepted. Probabilistic 
acceptance is determined by generating a random value in the range (0...1) and 
performing the indicated comparison. Initially the temperature is high and virtually any 
move is accepted. As the temperature is lowered it becomes ever more difficult to accept 
worsening moves. Eventually, only improving moves are allowed and the process 
becomes ‘frozen’. The algorithm terminates when the stopping criterion is met. Common 
stopping criteria, and the ones used for the work in this thesis, are to stop the search after 
a fixed number MaxIL of inner loops have been executed, or else when some maximum 
number MUL of consecutive unproductive inner loops have been executed (an inner loop 
is termed unproductive if no move is accepted within it). Generally the best state achieved 
so far will also be recorded (since the search may actually move out of it and subsequently 
be unable to find a state of similar quality). At the end of each inner loop the temperature 
is lowered. The simplest way of lowering the temperature is shown. This is known as 
geometric cooling. The basic simulated annealing algorithm has proven remarkably 
effective over a range of problems. This technique will be used (with hill-climbing) to 
improve the AES S-box. 

Figure  3–4 shows the Boolean function optimization results for (MaxIL=100) and 
(MUL=100) and (T=10) and (α=0.9). It is clear that the maximum achievable 
Nonlinearity using this method is 114.  
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Figure  3–4: Simulatd Annealing Algorithm output (Nonlinearity vs iteration number) 

Figure  3–5 shows the Simulated annealing results when the optimization objectives are 
both high nonlinearity and low autocorrelation. It is clear that the maximum achievable 
nonlinearity is 112 and the minimum achievable autocorrelation is 48.  

 
Figure  3–5: Simulatd Annealing Algorithm output (Nonlinearity & Autocorrelation vs 

iteration number) 

3.4.3. Tabu Search 

Tabu search is a widely used modern local search technique. The next move to take is 
decided using cost function values but also historical information (i.e. it uses memory of 
some form). This allows the search to escape from local optima and also to explore the 
search space in a productive fashion. Tabu search generally adopts a best improvement 
local search but moderates this policy using historical information. 
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If a particular solution S is reached then it becomes ‘tabu’ for some number Ts of 
transitions, generally referred to as the solution’s tabu tenure. If a solution is tabu, the 
search is normally prevented from moving to that solution, i.e. the local neighborhood 
from which the next solution is chosen excludes those solutions that are currently tabu. 
Conceptually, the currently tabu solutions together with their remaining tabu tenures form 
a ‘tabu list’. In its simplest form, with common tabu tenure of T, the list becomes a FIFO 
queue. The most recently visited solution is added and the solution visited T moves ago is 
removed. The tabu list implements what is generally referred to as a recency criterion. It 
prevents the search revisiting solutions in the short term (and so short cycles are 
prevented). The higher the tabu tenure the more the search is forced to explore the 
solution space. The tabu tenure may be varied during the search. Figure 2.2 outlines a 
basic tabu search procedure (taken from [23], which provides an interesting consideration 
of metaheuristic techniques more generally). 

 
Figure  3–6: Basic Tabu Search Procedure 

In practice maintaining lists of solutions is very inefficient. Much more common is to 
keep lists of solution attributes or moves. Consider an object permutation problem, i.e. 
where objects O1 ,O2...On must be arranged in some order (and there is a cost associated 
with each such order). If a move (i,j) (with i<j) is taken that swaps the positions of objects 
Oi and Oj then this could be made tabu for a period. A more stringent tabu criterion would 
make any move involving object Oi or object Oj tabu. Thus, taking move (1, 4) would 
render tabu any move of the form (a,b) where either a or b is equal to 1 or 4. Other 
features may be taken into account. For example, the actual cost associated with a solution 
could be made tabu. The search would be prevented from visiting solutions with the same 
cost function value for the tabu tenure. 

The tabu status of a move can be relaxed if taking that move would give rise to a 
particularly good solution, most typically a solution better than any reached so far (this is 
generally referred to as the aspiration criterion). Other aspects of history can also be 
taken into account, such as long-term frequencies of particular move types. The notion of 
influence is also used to guide the search; a move that causes greater change (measured in 
some fashion) is deemed to be more influential. Thus, influence criteria can be created 
and applied to diversify the search. For an excellent discussion of tabu search details the 
reader is referred to the chapter on tabu search by Glover in [24]. 
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Figure  3–7 shows the Boolean function optimization results for Tabu search with long 
term memory. It is clear that the maximum achievable Nonlinearity using this method is 
114.  

 
Figure  3–7: Tabu search Algorithm output (Nonlinearity & Autocorrelation vs iteration 

number) 

Figure  3–8 shows the Simulated annealing results when the optimization objectives are 
both high nonlinearity and low autocorrelation. It is clear that the maximum achievable 
nonlinearity is 112 and the minimum achievable autocorrelation is 48.  

 
Figure  3–8: Tabu Search Algorithm output (Nonlinearity & Autocorrelation vs iteration 

number) 

3.4.4. Genetic Algorithms 

Genetic algorithms are part of a class of what is known as Evolutionary algorithms. 
Evolutionary algorithms are computational models that solve a given problem by 
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maintaining a changing population of individuals, each with its own level of “fitness”. 
The change in the population is achieved by the selection, reproduction and mutation 
procedures within the method. The operation of these three procedures is dependent upon 
the fitness of the individuals concerned [11]. 

 We begin by defining some terminology relating to natural selection: 

• Parent pool: contains the current set of candidate solutions. 
• Parents:  the pair of individuals in the parent pool chosen for breeding. 
• Children:  offspring resulting from the breeding of two parents. 
• Breed:  the process whereby two parents are combined or mated to produce a 

child. 
• Fitness:  the measure taken in order to ascertain which individuals will survive 

to the next generation. 

Genetic algorithms are characterized by the fact that all the information for any 
individual in the population is encoded using some linear encoding system. This (usually 
binary) encoding is intended to be analogous to natural DNA consisting of a string of four 
kinds of chromosomes.  

Initially, a pool of P solutions is selected randomly and the fitness of each solution in 
the pool is calculated. Here, the pool consists of truth tables corresponding to (initially 
random) balanced Boolean functions. From this pool pairs of parents are chosen to act as 
the parents of the next generation. Parents may be chosen randomly, based on their fitness 
or exhaustively (all possible paring are tried). The breading process requires some mating 
function for combining parent solutions. We illustrate the general process of breeding by 
describing below two common schemes for breeding functions in a population pool. 

• Roulette Wheel: This scheme arises from the idea that the parents in the 
population pool occupy a particular percentage angle on a roulette wheel, the 
size of which is determined proportionately by their fitness measure. Thus, 
fitter individuals occupy greater angles on the wheel and have a higher chance 
of selection with the spinning of the wheel [25]. 

• Crossover: This breeding scheme is based on the genetic mechanism of 
crossover which occurs in sexual reproduction. In this natural process, genetic 
variation results from the breaking and recombination of linked genes in 
homologous chromosomes, thus producing offspring with combined attributes 
of two parents. Function breeding schemes based on crossover extend this idea 
by choosing a random position in the two parent functions at which the 
crossover of elements will begin and subsequently interchanging the elements 
in the parent functions from this point. Thus, the resulting offspring will take 
the elements of the first parent up to and including the element at the crossover 
point and the elements of the second parent for the remaining positions [26]. 

Here we use a merging operation which combines two parents to produce a single 
offspring. The offspring will be a balanced function which is similar to each of its parents 
(the merge operation described in detail below). Typically, each of the offspring 
undergoes some mutation. As will be seen below, the merging operation used incorporates 
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a random mutation so a separate mutation operation is not required. At this stage the 
survivors for the next iteration are chosen. This involves combining the parents and 
offspring pools and selecting the most fit as the new solution pool for the next iteration. 

The merging (or mating) operation is now described [18]. This operation takes two 
balanced Boolean functions as input and produces a single balanced Boolean function as 
offspring. Consider two Boolean functions of n inputs. The truth tables corresponding to 
these functions will contain 2n bits. Call the two parent functions p1 and p2, and let pk[i] 
denote the ith in the truth table of parent k. Also, n1 denotes the number of 1’s which have 
been placed in the child in positions where the parents differ, and dist (p1, p2) is the 
Hamming distance between the two truth tables, p1 and p2. The objective of the algorithm 
is to ensure that a child is balanced. The offspring c is determined as shown in Figure  3–9. 

 
Figure  3–9: Breeding Scheme of the Genetic Algorithm 

The check in step 2 is to ensure that only parents which are close to each other are 
allowed to breed. It should be noted that complementing a Boolean function’s truth table 
doesn’t alter its nonlinearity. The checks in step 3(b)i and 3(b)ii are used to force 
offspring to be balanced. The overall genetic algorithm is shown in  

 
Figure  3–10: Genetic Algorithm to Improve Nonlinearity of Boolean function 
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Figure  3–11 shows the Boolean function optimization results for Genetic algorithm for 
initial population (p=10) and 10 iterations. It is clear that the maximum achievable 
Nonlinearity using this method is 114.  

 
Figure  3–11: Genetic  Algorithm output (Nonlinearity vs iteration number) 

Figure  3–12 shows the Genetic algorithm results when the optimization objectives are 
both high nonlinearity and low autocorrelation (p=5 and number of iterations=100). It is 
clear that the maximum achievable nonlinearity is 114 and the minimum achievable 
autocorrelation is 40.  

 
Figure  3–12: Genetic Algorithm output (Nonlinearity & Autocorrelation vs iteration 

number) 
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3.4.5. Comparison between Different Optimization Results 

Table  3–1 shows our optimization results for the nonlinearity and autocorrelation of 8 
inputs balanced Boolean function. The best achievable result for nonlinearity as cited in 
[18] is 116 and the upper bound of the nonlinearity is 118. The best achievable results for 
autocorrelation as cited in [12] is 40 and the lower bound of the nonlinearity is 32. 

Table  3–1: Comparison between nonlinearity and autocorrelation for different 
optimization algorithms  

 Hill Climbing Simulated Annealing Tabu Search Genetic Algorithm
Nonlinearity 112 114 114 114 
Autocorrelation -- 48 48 40 

3.5. Optimization Algorithms of S-box 

A substitution box (or S-box) is a mapping from n binary inputs to m binary outputs. 
Any S-box may be described by the set of m single output Boolean functions. The main 
cryptographic interest has been with reversible, or bijective, S-boxes. For an S-box to be 
bijective n=m, and all possible output vectors appear exactly one each [16]. A bijective S-
box implements a permutation of the input vectors. From this it is easy to show that every 
linear combination of the output is a balanced function. 

We will use the same optimization algorithms used with a single Boolean function to 
optimize n x n S-box. For the n-output case the non-linearity is the worst (lowest) non-
linearity of all the linear combination of the n Boolean function. Similarly, the 
autocorrelation is the worst (highest) over all such derived single-output functions. 

Figure  3–13 shows the genetic algorithm optimization results of 8x8 s-box nonlinearity 
for initial population (p=5) and ten iterations. The maximum nonlinearity achieved by this 
algorithm is 100.   

 
Figure  3–13: S-box Genetic Algorithm output (nonlinearity vs iteration number) 
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Figure  3–14 shows the simulated annealing optimization results of 8x8 s-box 
nonlinearity for (MIL=20), (T=100), (α=0.9) and 40 iterations. The maximum 
nonlinearity achieved by this algorithm is 98.   

 
Figure  3–14: S-box simulated annealing output (nonlinearity vs iteration number) 

Figure  3–15 shows the Tabu search with long term memory optimization results of 8x8 
s-box nonlinearity for 100 iterations. The maximum nonlinearity achieved by this 
algorithm is 96.   

 
Figure  3–15: Tabu search S-box output (nonlinearity vs iteration number) 

Figure  3–16 shows the Genetic algorithm results when the optimization objectives are 
both high nonlinearity and low autocorrelation (p=5 and number of iterations=100). It is 
clear that the maximum achievable nonlinearity is 114 and the minimum achievable 
autocorrelation is 40.  
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Figure  3–16: S-box Genetic Algorithm output (Nonlinearity & Autocorrelation vs 

iteration number) 

It is clear that the best results are achieved using genetic algorithm and our new 
suggested Rijndael like s-box will be that one obtained using genetic algorithm and its 
objectives are high nonlinearity and low autocorrelation (98,88). Table  3–2 shows our 
suggested Rijndael like s-box.  

Table  3–2: Rijndeal Like S-Box 
 Y 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 D6 81 89 12 86 2A 2D C4 7E DF 1D 9E A2 97 94 21 
1 37 53 1B C8 C5 52 6F 8F 77 3A EA E1 8D 19 9F F8 
2 8B CD 43 36 7C 26 32 F7 59 BA F4 EF 61 AF 82 6E 
3 C7 DC 85 3C ED 5 15 46 0B 35 8A B5 B0 7 65 DD 
4 9B 1C 9 5C 4 A5 2B 1E 64 FA F5 EE 22 C0 58 49 
5 E9 27 B8 79 40 E3 3F 8 BE 3D 33 5B B1 90 34 B2 
6 5A CB AB 1A F2 3E 4C 29 67 6 CF DB AA D7 A1 47 
7 83 F9 E5 80 16 57 4A 4F F0 B7 BC C2 84 0C 99 5E 
8 A4 FF 48 55 0E B9 17 CC 93 D4 13 0 FE 3B 9C 8C 
9 6B 0A 44 10 D0 50 C9 D5 E8 69 91 B6 88 1F 25 DE 
A B3 7B 2F 0F 98 BF D8 A6 C1 39 41 18 75 60 24 1 
B 0D 4D 6C 14 73 D3 7F 20 E6 74 7A 63 E7 66 A7 2C 
C A8 E4 EC D9 76 6D 30 31 BB CE D1 92 2 42 BD 7D 
D 68 62 E2 9D E0 DA D2 28 95 38 5D 2E F6 CA 71 A9 
E 6A 96 54 9A FC 23 8E 51 5F F3 A3 AC FB C6 87 78 
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C h a p t e r  4  

IMPLEMENTATION APPROACHES FOR THE AES 

In this chapter, we introduce the architectural optimization approaches for the AES 
algorithm; algorithmic optimizations for each round unit in the AES algorithm are 
described. The last section explores resource sharing between encryptor and decryptor. 

4.1. Architectural Optimization 

A block cipher encrypts plain text in fixed-size n-bit blocks (n = 128 for AES). 
Messages longer than n bits are divided into n-bit blocks, and each block is encrypted 
separately. Basically, there are five modes of operation: electronic codebook (ECB), 
cipher block chaining (CBC), cipher feedback (CFB), output feedback (OFB) and counter 
(CTR) mode. Non-feedback (NFB) modes such as the ECB mode offer less security, but 
can achieve great speedup by processing multiple blocks simultaneously. The other three 
basic modes belong to feedback (FB) mode, which can offer a higher level of security but 
can hardly achieve any speedup by multi-block processing due to the existence of 
feedback the processing of the next block cannot begin until the current block is finished. 

4.1.1. Architectures of AES Encryptor/ Decryptor 

Three types of architectures can be used   to   increase   the   speed   of encryptor/ 
decryptor by duplicating hardware for implementing each round, which is also called 
round unit in this paper. These architectures are based on pipelining, sub-pipelining, and 
loop unrolling [27]. They are illustrated in Figure  4–1 together with basic reference 
architecture. 

4.1.1.1. Pipelining 

The pipelined architecture can increase the speed of encryption/ decryption by 
processing multiple blocks of data simultaneously. It is realized by inserting rows of 
registers among combinational logic. Parts of logic between two consecutive registers 
form pipeline stages. Each pipeline stage is one round unit in this case. During each clock 
cycle, the partially processed data moves to the next stage and its place is taken by the 
subsequent data block. The number of round units in each loop, k, is usually chosen as a 
divisor of Nr and the maximum value of k is Nr, in which case it becomes a fully 
pipelined architecture. For a k-round pipelined architecture, when a partially processed 
block reaches the kth round, it will be fed back to the first round until all the Nr rounds are 
performed on this block.  After the pipeline reaches its full depth, that is after the first 
block reaches the kth stage, k blocks of data are processed simultaneously in different 
stages and k blocks of data are processed every Nr cycles. The area of the pipelined 
architecture is proportional to k. 
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4.1.1.2. Sub-Pipelining 

Similar to the pipelining, sub-pipelining also inserts rows of registers among 
combinational logic, but in this case, registers are inserted both between and inside each 
round unit. If each round unit can be divided into r stages with equal delay, a k-round sub-
pipelined architecture  can  achieve  approximately  r  times  the  speed  of  a k-round 
pipelined architecture with a slight increase of area caused by additional  registers  and  
control logic. However, dividing each round unit into an arbitrary number of stages does 
not always bring speedup. Since the minimum clock period is decided by the indivisible 
combinational element with the longest delay, dividing the rest of the round unit into 
more stages with shorter delay does not reduce the minimum clock period. Although more 
blocks of data are being processed simultaneously, the average number of clock cycles to 
process one block of data is increased by the same proportion. Therefore the overall speed 
does not improve despite increased area caused by the additional registers. 

 
Figure  4–1: Three types of architecture of encryptor/decryptor with a basic reference 

architecture: (a) pipelined architecture, (b) sub-pipelined architecture, (c) loop unrolled 
architecture, (d) basic reference architecture 
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4.1.1.3. Loop Unrolling 

Loop unrolled or unfolded architectures can process only one block of data at a time, 
but multiple rounds are performed in each clock cycle. The unrolling or unfolding factor, 
k, is usually chosen as a divisor of Nr and the maximum value of k is Nr. The number of 
cycles to process one block of data is Nr / k in this case. Meanwhile, the clock period of a 
k-round loop unrolled architecture is increased to slightly smaller than k times the clock 
period of a pipelined architecture because of the setup time and propagation delay of 
registers. The area of this architecture is also proportional to the number of rounds in each 
loop. 

Most of the proposed implementations can be classified into one of the above three 
architectures.  Detailed studies of all these architectures were carried out in [28] and [29]. 
In this section, we separately address the speedup factor of these three architectures for 
FB and NFB modes compared to the basic reference architecture. 

4.1.2. Architectural Optimization for Non-Feedback Modes 

The speed of a system can be measured by throughput, which is given by  

     / secThroughput average number of bits processed ond=  

In the case of the AES algorithm, it can also be expressed as  

128 /(      
     )

Throughput average number of clock cycles to
process one block x clock period

=
  ( 4.1) 

Maximum achievable throughput for each architecture is compared in this section. In 
the basic architecture in Figure  4–1-d, only one round is performed in each clock cycle, so 
Nr clock cycles are needed to finish processing one block of data. The minimum clock 
period tbasic can be expressed as 

   =basic round setup prop muxt t t t t+ + +     ( 4.2)  

In the above equation, tround is the delay of the combinational logic in each round unit; tmux 

denotes the delay of the multiplexer, whereas tsetup and tprop stands for the setup time and 
propagation delay of the registers, respectively. From equation  ( 4.1), the maximum 
achievable throughput of the basic architecture is given by  

128 /  (   )basic basicthroughput Nr x t= . 

In the pipelined architecture in Figure  4–1-a, assuming k is a divisor of Nr, after the 
initial k clock cycles, k blocks of data are processed every Nr cycles. Meanwhile, the 
minimum clock period is the same as that of the basic architecture. The speedup of pipelined 
architecture over the basic architecture is /  pipe basicthroughput throughput k=  
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The area of this architecture is proportional to the number of pipeline stages, k. 
Tradeoffs between area and speed can be easily made by changing k. In the sub-pipelined 
architecture of  the AES algorithm, each of the round units should be divided into no more 
than  two  stages  according  to  the former  discussion  in  this  section. 

SubBytes/InvSubBytes is usually implemented by look-up tables. 
ShiftRows/InvShiftRows  does  not need   any   logic   to   implement, 
MixColumns/InvMixColumns can be implemented  by  XOR  gates,  and 
AddRoundKey  is  only  one  step  of XOR operation. Hence each round unit is usually 
divided into r = 2 stages, one for SubBytes/InvSubBytes transformation and another for 
the rest of the transformations. Assuming the two stages in each round have equal delay, 
2k blocks of data will be processed every 2Nr cycles after the pipeline reaches its full 
depth. Let ( + ) /setup prop mux roundt t t tτ = + . The minimum clock period of sub-pipelining is 
(0.5 ) /(1 )τ τ+ +  times that of the basic architecture. The speed up of a k-round sub- 
pipelined architecture with r = 2 is given by  

- /     (1 ) /(0.5 ) sub pipe basicthroughput throughput k τ τ= + +   ( 4.3) 

The area of sub-pipelined architecture is also proportional to the parameter k but does 
not change much with r. Increasing number of inner round stages only introduces more 
registers, whose area is small compared to the total  area  of  implementation. 

The throughput  of  this  architecture  is (1 ) /(0.5 )τ τ+ +  times that of a pipelined  
architecture  with  the  same  k. Usually τ is small, so there is almost twice speedup over 
pipelining at the cost of r – 1 additional rows of registers. 

In the loop unrolled architecture in Figure  4–1-c, assuming k is a divisor of Nr, one block 
of data is processed every Nr / k cycles. However, the minimum clock period is increased 
to 

lu round setup prop muxt k t t t t= × + + +    ( 4.4)  

Which is ( ) /(1 )k τ τ+ +  times the minimum clock period of the basic architecture.  
Hence the speedup of a k- round loop unrolled architecture can be expressed as 

/ (1 ) /(1 /   ) lu basicthroughput throughput kτ τ= + +    ( 4.5) 

The area of loop unrolled architecture is also proportional to the number of rounds per 
loop; k. Compared to the k-stage pipelined architecture, the speedup is much lower at 
roughly the same area. 

Depending on different optimization criteria, different architectures can be employed. 
Optimization for maximum speed can be realized by a fully sub-pipelined architecture. In 
the application requiring minimum area, the basic architecture is desired. In the case of 
optimum speed/area ratio, sub- pipelining seems to be the best choice. Numerous 
implementations of these architectures on different technologies have been studied. The 
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reported fastest FPGA implementation can reach 12 Gbit/sec on a Xilinx Virtex-E 
XCV812E-8BG560 device for a fully pipelined 128-bit key encryptor in NFB modes 
[30]. 

4.1.3. Architectural Optimization for Feedback Mode 

In feedback modes, the encryption/ decryption of the next block cannot start until the 
current block is finished. In this case, pipelining does not lead to any speedup, because 
only one stage is processing one block of data in each cycle, while the other stages are 
idle. Meanwhile, the area increases proportionally to k. Therefore pipelined architecture is 
not suitable for feedback applications. Loop-unrolled architecture, however, can bring 
some speedup at the cost of significantly increased area. The speedup which can be 
achieved is the same as that in non-FB modes given by equation (4.5). Sub-pipelining can 
even deteriorate the performance; Nr x r cycles are needed to encrypt/decrypt one block of 
data, but even in the optimum case when each inner stage has equal delay, the clock 
period is longer than tbasic / r because of the setup and propagation delay of the registers. 
The fastest implementation for FB modes reported so far employed a fully loop unrolled 
architecture, and achieved a throughput of 1950.03 Mbits/sec based on Mitsubishi 
Electric’s 0.35 micron CMOS technology [31]. 

4.2. Algorithmic Optimization 

A complete AES system can be divided into three major blocks: Key Expand, 
Control, and EnDecrypt, as illustrated in Figure  4–2. The Key Expand block loads keys, 
performs Key Expansion transformation, and generates proper roundkeys under the 
control signals from the Control block. Control block takes ‘start’ signal, ‘reset’ signal, 
‘enc’ signal, and ‘key_length’ signal from outside and generates all the control signals 
for the whole system.   The   ‘enc’   signal   and   the ‘key_length’ signal are optional. 
The ‘enc’ signal is the control signal for encryption/decryption; it is needed when the 
system can perform both encryption and decryption. The ‘key_length’ signal 
gives the key length information; it is needed when the system can perform multiple key 
length encryption/decryption. The EnDecrypt block gets roundkeys from the Key-
Expand block and encrypts/ decrypts ‘data_in’ according to the AES algorithm. Each of 
the architectures pipelining, loop unrolling, and sub-pipelining covered in the last 
section can be used in the EnDecrypt block. The speed and area trade-offs of the AES 
algorithm can not only be made by changing the overall architecture of the EnDecrypt 
block, but also by exploiting the implementation of each round unit. A variety of 
methods have been brought up to implement individual round unit [31], [33–37]. They 
are discussed in detail in this section. 
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Figure  4–2: Block diagram of the AES system 

4.2.1. Implementation of Separate Transformations 

No optimization can be performed on ShiftRows/ InvShiftRows and AddRoundKey 
transformations, since no logic gates are needed for the former transformation and only 
one step of XOR operation is needed for the latter. However, different methods can be 
used to implement the SubBytes/ InvSubBytes and MixColumns/InvMixColumns 
transformations. 

4.2.2. Implementation of SubBytes/ InvSubBytes 

SubBytes/InvSubBytes is usually implemented by look-up tables. Each S-box/S –1-
box needs a look-up table of 256 x 8 = 2k-bits and each round needs 16 S-boxes/S –1- 
boxes, so the area for look-up tables becomes huge when multiple round units are 
implemented. For area critical applications, a better choice is to map the arithmetic 
operations on GF(28) to isomorphic field GF((24)2). This implementation requires 
smaller area for look-up tables, but has longer delay [20, 21]. 

4.2.3. Implementation of MixColumns/ InvMixColumns 

In the MixColumns transformation, we need to implement constant multiplication of 
{02} and {03} in GF(28). Assuming X is a byte in  the  State,  {02}X  can  be  
implemented by shifting and bit-wise XOR operations, and {03}X can be computed by 
({02}X) ⊕ X. If X is expressed in binary form as {x7, x6, x5, x4, x3, x2, x1, x0}, {02}X can be 
calculated by 

7 6 5 4 3 2 1 0 7 7 7 7{02} { , , , , , , , , 0} {0, 0, 0, , , 0, , }X x x x x x x x x x x x x= ⊕   ( 4.6) 

Since 0 ⊕ xi = xi, equation ( 4.6) only needs 4 XOR gates to implement. The block diagram 
in Figure  4–3 shows the straightforward way to calculate S'0, c (0 ≤ c < 4) in the 
MixColumns transformation [8]. Since {01}X = X, X instead of {01}X is used in this and the 
following figures. Calculation of S'1, c, S'2, c, and S'3, c  can be done  by  connecting  
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appropriate {02}X, {03}X, or X of S'1, c, S'2, c, and S'3, c  to the last row of XOR gates in 
Figure  4–3 according to equation (2.22). As shown in the figure, the critical path has 4 XOR 
gates and a total of (4 x 8 + 4) x 4 =144 2-input XOR gates is needed to implement the 
MixColumns transformation for one column of the State. 

 
Figure  4–3: Block diagram for straightforward implementation of the MixColumns 

transformation 

The InvMixColumns transformation is more complicated.  Constant multiplications 
used in the InvMixColumns transformation can be expressed as 

{0b}X = {08}X ⊕ {02}X ⊕ X,  {0d}X = {08}X ⊕ {04}X ⊕ X, 
{09}X = {08}X ⊕ X,   {0e}X = {08 }X{ ⊕ {04}X ⊕ {02}X 

A straightforward way to calculate S'0, c (0 ≤ c < 4) of the State in the InvMixColumns 
transformation is illustrated in Figure  4–4. In order to simplify the diagram, an XTime 
block is introduced as shown in Figure  4–5. XTime block implements the constant 
multiplication by {02} in GF(28) [9], each XTime block consists of 4 XOR gates and the 
critical path includes only one XOR gate. 
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Figure  4–4: Block diagram for straight forward implementation of the InvMixColumns 

transformation 

 
Figure  4–5: Block diagram of Xtime 

In the InvMixColumns transformation, the calculation for the other bytes can be carried 
out similarly according to equation ( 2.24). As shown in Figure  4–4, the critical path is 6 
XOR gates, and a total of (10 x 8 + 3 x 4) x 4 = 368 XOR gates is needed to implement the 
InvMixColumns transformation for one column of the State. 

Studies in [33, 42, 36] have proposed alternative ways to implement the 
MixColumns/InvMixColumns transformation. Both the studies in [33, 36] exploited the 
idea of substructure sharing. In [33]’s study, taking the bytes in the first row of the State 
for example, 

'
0, 0, 1, 2, 3,[{02}{03}{01}{01}] [ ]Tc c c c cs s s s s= ×    ( 4.7) 
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This can be rewritten as  

'
0, 0, 1, 1, 2, 3, {02}( ) ( )c c c c c cS S S S S S= + + + +    ( 4.8)  

The above equation can be realized as shown in Figure  3–6. 

 
Figure  4–6: Block diagram for substructure sharing implementation of MixColumns 

transformation 

  The computation of the other bytes in the State can be implemented by similar 
structure and the same number of XOR gates. Compared to Figure  4–4, the total number 
of XOR gates for computing one column of the State remains 144, but the critical path has 
been reduced to 3 XOR gates. 

The same substructure sharing idea can be used in the InvMixColumns 
transformation. For example, the bytes in row one of the State are calculated  

  '
0, 0, 1, 2, 3,[{0 }{0 }{09}{0 }] [ ]Tc c c c cs e b d s s s s= ×   ( 4.9)  

This can be rewritten as 

'
0, 0, 1, 2, 3, 0, 2, 

0, 1, 1, 2, 3, 

   {04}({02}(    )  {02}(   )  (   ))
 {02}(    )   (    )

c c c c c c c

c c c c c

S S S S S S S
S S S S S

= + + + + +

+ + + + +
  ( 4.10) 

Equation (4.10) can be implemented as shown in Figure  4–7. Compared to the 
straightforward implementation in Figure  4–4 , the number of XOR gates is reduced to (8 
x 8 + 4 x 4) x 4 = 320 for computing one column of the State, but the critical path is 
increased to 7 XOR gates. 
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Figure  4–7: Block diagram for substructure sharing implementation of the InvMixColumns 

transformation 

 Substructure sharing can be used in another way as in [36]. Since 

{0b}X = ({08}X ⊕ X) ⊕ {02}X, 
{0d}X = ({08}X ⊕ X) ⊕ {04}X, 
{09}X = {08}X ⊕ X, 
{0e}X = {08}X ⊕ {04}X ⊕ {02}X. 

Three of the above equations have the common factor {08}X⊕X. Therefore, hardware 
usage can be reduced by first calculating the common factor and then using it in the 
calculation of the other equations. This approach leads to the implementation shown in 
Figure  4–8. In this figure, the critical path still has 7 XOR gates, but the total number of 
XOR gates has been reduced further to (8 x 8 + 3 x 4) 4= 304 for calculation of one 
column of the State. 
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Figure  4–8: Block diagram for alternative substructure sharing implementation of the 

InvMixColumns transformation. 

Another approach in [35], [36] makes use of the polynomial notation of elements in 
GF(28) with irreducible polynomial m(α)=α8+α4+α3+α+1. For example, {03} can be 
expressed as polynomial α+1,  

Y= {03}X=(α+1) 7 6 5 4 3 2
7 6 5 4 3 2 1 0( ) mod ( )x x x x x x x x mα α α α α α α α+ + + + + + +   

Then each bit of Y can be expressed as 
y7  = x7  ⊕ x6,                y6  = x6  ⊕ x5, y5  = x5  ⊕ x4,  y4  = x7  ⊕ x4  ⊕ x3, 
y3  = x7  ⊕ x3  ⊕ x2,    y2  = x2  ⊕ x1,     y1  = x7  ⊕ x1  ⊕ x0,    y0  = x7  ⊕ x0. 

Similarly, all the constant multiplication used in MixColumns and InvMixColumns 
transformations can be calculated by the equations in Table  4–1. 
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Table  4–1: Individual Bit Expression for Constant Multiplications 
 {02}X {03}X {09}X {0b}X {0d}X {0e}X 

y7  x6  x6 ⊕ x7  x4 ⊕ x7  x4 ⊕ x6 ⊕ x7  x4 ⊕ x5 ⊕ x7  x4 ⊕ x5 ⊕ x6  

y6  x5  x5 ⊕ x6  x3 ⊕ x6 ⊕ x7  x3 ⊕ x5 ⊕ x6 ⊕ x7  x3 ⊕ x4 ⊕ x6 ⊕ x7  
x3 ⊕ x4 ⊕ x5 ⊕ 
x7  

y5  x4  x4 ⊕ x5  
x2 ⊕ x5 ⊕ x6 
⊕ x7  

x2 ⊕ x4 ⊕ x5 ⊕ x6 
⊕ x7  

x2 ⊕ x3 ⊕ x5 ⊕ x6  
x2 ⊕ x3 ⊕ x4 ⊕ 
x6  

y4  x3 ⊕ x7  
x3 ⊕ x4 
⊕ x7  

x1 ⊕ x4 ⊕ x5 
⊕ x6  

x1 ⊕ x3 ⊕ x4 ⊕ x5 

⊕ x6 ⊕ x7  
x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ 
x7  

x1 ⊕ x2 ⊕ x3 ⊕ 
x5  

y3  x2 ⊕ x7  
x2 ⊕ x3 
⊕ x7  

x0 ⊕ x3 ⊕ x5 
⊕ x7  

x0 ⊕ x2 ⊕ x3 ⊕ x5  
x0 ⊕ x1 ⊕ x3 ⊕ x5 ⊕ 
x6 ⊕ x7  

x0 ⊕ x1 ⊕ x2 ⊕ 
x5 ⊕ x6  

y2  x1  x1 ⊕ x2  x2 ⊕ x6 ⊕ x7  x1 ⊕ x2 ⊕ x6 ⊕ x7  x0 ⊕ x2 ⊕ x6  x0 ⊕ x1 ⊕ x6  

y1  x0 ⊕ x7  
x0 ⊕ x1 
⊕ x7  

x1 ⊕ x5 ⊕ x6  
x0 ⊕ x1 ⊕ x5 ⊕ x6 

⊕ x7  
x1 ⊕ x5 ⊕ x7  x0 ⊕ x5  

y0  x7  x0 ⊕ x7  x0 ⊕ x5  x0 ⊕ x5 ⊕ x7  x0 ⊕ x5 ⊕ x6  x5 ⊕ x6 ⊕ x7  

Studies in [35], [36] did not further investigate the individual bit calculation of 
constant multiplication. Direct implementation of the equations in Table  4–1 does not 
bring any area or critical path reduction. However, the idea of substructure sharing can be 
also applied to the calculation of individual bits. After making modifications to the 
algorithm in [39], the following algorithm is derived to find the substructures that can be 
shared in the constant multiplications. 

1. round = 0. 
2. For i, j = 0 to 7 + round, count the number of times xi  ⊕ xj  appears in all the equations, 

denote the number by N(i, j). Find the biggest number N(m, n). If there is a tie, pick one at 
random. 

3. If N(m, n) > 1, then replace xm  ⊕ xn in all those equations with x7 + round, otherwise STOP. 
4. round = round + 1, go to step 2. 

For example, in the MixColumns transformation, we need to calculate the sixteen 
equations in the second and third columns in Table  4–1 for each byte in the State, the 
biggest number of third columns in Table  4–1 for each byte in the State. The biggest 
number of times xi ⊕ xj appears is three when (i =0, j = 7) or (i = 3, j = 7). We pick x0 ⊕ x7 

randomly and replace x0 ⊕ x7 with x8 in all equations, and then the second and third 
columns in Table  4–1 become Table  4–2. In the next round, the biggest number of xi ⊕ xj 

in common in all the equations in Table  4–2 is three, when (i = 3, j = 7). Replacing x3  ⊕ x7  

with x9  in Table  4–2, Table  4–3 is derived. In the third round, the biggest N(i, j) is 1, so 
the algorithm stops and Table  4–3 is the final table. MixColumns can be then using them in 
the computing of other equations according to Table  4–3. 

Figure  4–9 illustrates this implementation. 
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Table  4–2: Substructure Sharing in 
Individual Bit Calculation for the 

MixColumns Transformation after the 
First Round 

 {02}X {03}X 

y7  x6  x6 ⊕ x7  
y6  x5  x5 ⊕ x6  
y5  x4  x4 ⊕ x5  
y4  x3 ⊕ x7  x3 ⊕ x4 ⊕ x7  
y3  x2 ⊕ x7  x2 ⊕ x3 ⊕ x7  
y2  x1  x1 ⊕ x2  

y1  x8  x1 ⊕ x8  

y0  x7  x8  
 

Table  4–3: Substructure Sharing in 
Individual Bit Calculation for the 

MixColumns Transformation after the 
Second Round 

 {02}X {03}X 

y7  x6  x6 ⊕ x7  
y6  x5  x5 ⊕ x6  
y5  x4  x4 ⊕ x5  
y4  X9  x4 ⊕ x9  
y3  x2 ⊕ x7  x2 ⊕ x9  
y2  x1  x1 ⊕ x2  

y1  x8  x1 ⊕ x8  

y0  x7  x8  
 

Table  4–4: Substructure Sharing in Individual Bit Calculation for the 
InvMixColumns Transformation 

 {09}X {0b}X {0d}X {0e}X 

y7  x9  x6 ⊕ x9  x5 ⊕ x9  x4 ⊕ x8  

y6  x6 ⊕ x13  x8 ⊕ x13  x6 ⊕ x17  x5 ⊕ x17  
y5  x7 ⊕ x18  x9 ⊕ x18  x8 ⊕ x12  x4 ⊕ x6 ⊕ x12  
y4  x4 ⊕ x10  x10 ⊕ x17  x2 ⊕ x9 ⊕ x15  x12 ⊕ x15  

y3  x11 ⊕ x13  x11 ⊕ x12  x13 ⊕ x14  x2 ⊕ x14  
y2  x19  x1 ⊕ x19  x0 ⊕ x16  x0 ⊕ x1 ⊕ x6  
y1  x10  x7 ⊕ x14  x7 ⊕ x15  x11  
y0  x11  x7 ⊕ x11  x0 ⊕ x8  x7 ⊕ x8  

    
Where 
 

x8 = x5 ⊕ x6  x9 = x4 ⊕ x7 

x10 = x1 ⊕ x8 x11 = x0 ⊕ x5 

x12 = x2⊕x3  x13 = x3 ⊕ x7 

x14 = x0 ⊕ x10 x15 = x1 ⊕ x5 

x16 = x2 ⊕ x6 x17 = x3 ⊕ x9 

x18 = x2 ⊕ x8 x19 = x7 ⊕ x16 
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Figure  4–9: Block diagram for bit-wise implementation of the MixColumns transformation 

The critical path remains 4 XOR gates as in Figure  3–3, but the total number of XOR 
gates to calculate on a column of the State has been reduced to 4 x (10 + 3 x 8) = 136. 

Applying the same algorithm to the equations in the last four columns in Table  4–1, we 
get Table  4–4 as the final table for substructure sharing in the InvMixColumns 
transformation. According to this table, the critical path of the InvMixColumns 
transformation can only have 6 XOR gates if tree adders are used. At the same time, the 
total number of XOR gates to calculate one column of the State has been reduced to (30 + 
12 + 24) x 4 = 264. 

4.2.4. Look-Up Table Implementation of the Whole Round Unit 

Look-up  tables  not  only  can  be used  to  implement  the  SubBytes/ InvSubBytes 
transformation, they can also be used to incorporate MixColumns/InvMixColumns 
transformation [9,  30,  35,  40].  The T-box approach implements   the   combination   of 
SubBytes, ShiftRows and MixColumns transformations by look-up tables. Beginning 
from the SubBytes transformation, the updated State after the MixColumns transformation 
can be expressed as, for 0 ≤ c < Nb, 

'
0, 0,
'
1, 1, 1

'
2, 22,

'
3, 33,

( )02 03 01 01
( )01 02 03 01

01 01 02 03 ( )
03 01 01 02 ( )

c c

c c

cc

cc

s Subbytes s
s Subbytes s

Subbytes ss
Subbytes ss

+

+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

  ( 4.11) 
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Instead of storing only the value of SubBytes(Si, j) in the S-box approach, the T-box 
approach stores values of SubBytes(Si, j), {02}SubBytes(Si, j) and {03}SubBytes(Si, j). Each 
T-box has three 8-bits outputs and can be expressed as 

1 , ,

, 2 , ,

3 , ,

( ) ( )

( ) ( ) {02} ( ) . 0 , 4.

( ) {03} ( )

i j i j

i j i j i j

i j i j

T s SubBytes s

T s T s SubBytes s for i j

T s SubBytes s

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= = ≤ <⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  ( 4.12) 

Now equation (4.11) can be rewritten as 

 

'
0, 2 0, 3 1, 1 1 2, 2 1 3, 3
'
1, 1 0, 2 1, 1 3 2, 2 1 3, 3

'
1 0, 1 1, 1 2 2, 2 3 3, 32,

'
3 0, 1 1, 1 1 2, 2 2 3, 33,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

c c c c c

c c c c c

c c c cc

c c c cc

s T s T s T s T s
s T s T s T s T s

T s T s T s T ss
T s T s T s T ss

+ + +

+ + +

+ + +

+ + +

⎡ ⎤ ⊕ ⊕ ⊕⎡
⎢ ⎥

⊕ ⊕ ⊕⎢ ⎥
=⎢ ⎥ ⊕ ⊕ ⊕⎢ ⎥

⎢ ⎥ ⊕ ⊕ ⊕
⎣ ⎦

0 c Nb

⎤
⎢ ⎥
⎢ ⎥ ≤ <⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ( 4.13) 

The combination of SubBytes, ShiftRows and MixColumns transformations can be 
implemented by XORing the outputs of T-boxes. In the final round of encryption, there is 
no MixColumns transformation, so S-box instead of T-box should be used. In the fully 
pipelined or fully loop unrolled architecture, this will not be a problem, since each round 
uses separate hard- ware. However, for other architectures in which one round unit is used 
to perform different rounds of encryption in different clock cycles, T-box cannot be simply 
replaced by S-box. Adding an additional S-box is a solution, but this will lead to extra area 
for look-up tables. Another solution is to extract S-box from T-box; S-box is exactly the T1 

output of a T-box [35]. The T-box implementation has shorter delay than the S-box 
approach.  The delay of MixColumns is eliminated by adding a delay of 2 XOR gates if a 
tree adder is used to add up the four items in each row of the matrix on the right side of 
[40]. Based on the same technology and assumptions, the T-box approach improves the 
speed of an encryptor from 7 Gbit/sec in [41] to 12 Gbit/sec in [31].  However, the price 
paid for shorter delay is the three-times-bigger look-up tables. 

Correspondingly, T –1-box can be used to implement the combination of InvSubBytes, 
InvShiftRows and InvMixColumns transformations. From the beginning of 
InvSubBytes transformation, the updated State after the InvMixColumns transformation 
can be expressed as 

'
0, 0,
'
1, 1, 1

'
2, 22,

'
3, 33,

( )0 0 0 09
( )09 0 0 0

0 09 0 0 ( )
0 0 09 0 ( )

c c

c c

cc

cc

s InvSubbytes se b d
s InvSubbytes se b d

d e b InvSubbytes ss
b d e InvSubbytes ss

+

+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

   ( 4.14) 
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For 0≤ c < Nb. Each T –1-box stores four sets of values: 

, ,

, ,

{09} ( ), {0 } ( ),

{0 } ( ), {0 } ( ),
i j i j

i j i j

InvSubbytes s b InvSubBytes s

d InvSubbytes s e InvSubBytes s
 

Unlike T-box, each T –1-box has four 8-bit outputs and is four times the size of an S-
box, and can be expressed as 

1
0 , ,

1
1 , ,1

, 1
,2 ,

1
,3 ,

( ) {09} ( )

( ) {0 } ( )
( ) . 0 , 4.

{0 } ( )( )
{0 } ( )( )

i j i j

i j i j
i j

i ji j

i ji j

T s InvSubBytes s

T s b InvSubBytes s
T s for i j

d InvSubBytes sT s
e InvSubBytes sT s

−

−
−

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = ≤ <⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 ( 4.15) 

Now equation ( 4.14) can be rewritten as 

' 1 1 1 1
0, 3 0, 1 1, 1 2 2, 2 0 3, 3

' 1 1 1 1
1, 0 0, 3 1, 1 1 2, 2 2 3, 3

' 1 1 1 1
2, 2 0, 0 1, 1 3 2, 2 1 3, 3

' 1 1
3, 1 0, 2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) (

c c c c c

c c c c c

c c c c c

c c

s T s T s T s T s

s T s T s T s T s

s T s T s T s T s

s T s T s

− − − −
+ + +

− − − −
+ + +

− − − −
+ + +

− −

⎡ ⎤ ⊕ ⊕ ⊕
⎢ ⎥

⊕ ⊕ ⊕⎢ ⎥
=⎢ ⎥

⊕ ⊕ ⊕⎢ ⎥
⎢ ⎥ ⊕⎣ ⎦

1 1
, 1 0 2, 2 3 3, 3

0

) ( ) ( )c c c

c Nb

T s T s− −
+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥

≤ <⎢ ⎥
⎢ ⎥
⎢ ⎥⊕ ⊕⎣ ⎦

  ( 4.16) 

Similar  to  the  encryption  case, S–1-box needs to be used in the final round,  but  
none  of  the  outputs  of T –1-box is InvSubBytes(S i, j) this time. [35] brought up an 
efficient method to calculate InvSubBytes(Si, j) from theoutput of T –1-box. For any specific 
Si,j , each output byte of a T –1-box can be expressed in binary form as T –1(S  ) = [tm7, tm6, 
tm5, tm4, tm3, tm2, tm1, tm0] (m = 0,1, 2, 3), and InvSubBytes(Si, j) can be expressed  in  binary  
form  as  InvSubBytes(Si, j) = 1 1 1 1 1 1 1 1

7 6 5 4 3 2 1 0[ , , , , , , , ]s s s s s s s s− − − − − − − − .  

Since {09}-1= {4f},{0b}–1 =  {c0},  {0d}–1   =  {e1},  and {0e}–1  = {e5}, 

1 1
, 0 , 1 ,

1 1
2 , 3 ,

( ) {4 } ( ) { 0} ( )

{ 1} ( ) { 5} ( )
i j i j i j

i j i j

InvSubBytes s f T s c T s

e T s e T s

− −

− −

= =

= =
   ( 4.17)  

Each of the 8 bits of InvSubBytes (Si, j) can be computed as functions of individual bits 
in T –1(S). Four sets of expressions of sn (0 ≤ n < 8) can be derived from equation (4.17). 
Expressions with the shortest delay are chosen for each sn-1

 from the four sets as shown in 
Table  4–5. From Table V, at most two XOR  gates  are  needed  to  compute each  bit  of  
InvSubBytes(Si,  j)  from T –1-box. The critical path of the final round in   T  –1-box 
approach consists of a look-up table, 2 XOR gates to extract the value of  InvSubBytes(Si, j) 
and another   XOR   gate   to   add   up   the roundkey. The critical path of other round 
units includes a look-up table, 2 XOR gates to add up four outputs from different T-1 -
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boxes according to equation (  4.14), using adder tree structure, and another   XOR   
gate   to   add   the roundkeys. We can observe that the delays of each round in a T –1-
box approach are the same, and equal the total delay of a look-up table and 3 XOR gates. 
Compared to the total delay of a look-up table and at least 6 XOR gates in the S–1-box 
approaches, this approach has shorter delay but the price paid for that is the requirement of 
4- times-bigger look-up tables of an S–1-box approach, which makes pipelining or loop 
unrolling more expensive. 

Table  4–5: Extraction of S–1-box from T –1-box 

 

4.2.5. Implementation of Key Expansion 

Roundkeys can either be generated beforehand and stored in memory or be generated 
on the fly. The former case is suitable for the applications which do not change keys 
constantly and can afford large area for memory. 

During encryption/decryption, roundkeys can be read out from memory by appropriate 
address, and there is no extra delay for decryption. In this case, reducing the critical path 
of Key Expansion can reduce the overhead, but will not speed up the whole system. 
While in the applications which need to change keys constantly, expanding keys on the 
fly is preferred.  From Figure  2–12, we can observe that the critical path of Key Expansion 
consists of one multiplexer, one S-box, and one XOR gate. Since the critical path of Key 
Expansion is shorter than that of a round unit, reducing the critical path of Key Expansion 
will not increase the speed of the whole system.  Generating roundkeys on the fly 
eliminates the requirement for key storage, but brings overhead for decryption since 
decryption can only begin after the last roundkey is generated. 

4.3. Joint Implementation Issues of Encryptor/ Decryptor 

Source sharing becomes important when only small area is available for implementing 
both encryptor and decryptor, as in smart cards and cellular phones. While the algorithmic 
strength in the last section can be exploited to reduce area, the design could be improved 
further by sharing the resources between encryptor and decryptor. 

4.3.1. Joint Implementation of SubBytes and InvSubBytes 

In [10], each S-box/S–1-box requires a 2k-bit look-up table, and each round unit needs 32 
such look-up tables to implement bo th  encryp t ion  and  decryption. However, studies 
in [9, 16] proposed  that  the  SubBytes  and InvSubBytes transformation can share a 2k-
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bit look-up table for each byte in the State. The SubBytes transformation can be 
expressed as 

    
-1'   S M S c= +     ( 4.18) 

Where  

  

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

And c = [0 1 1 0 0 0 1 1]. 

The inverse of (18) is given by 

    1 ' 1
, ,( ( ))i j i jS M S c− −= +    ( 4.19) 

From equations ( 4.18) and (4.19), the SubBytes and InvSubBytes transformations can 
share look-up tables which only implement multiplicative-inverse in GF(28). Figure  4–10 
illustrates the block diagram for a joint SubBytes and InvSubBytes transformation [33]. 
The Joint S-box block is a look-up table which stores the value of multiplicative inverse, 
while the two rectangular blocks in the top implement the corresponding matrix 
multiplication and addition. The signal ‘enc’ is ‘1’ when it’s in encryption mode, and is ‘0’ 
otherwise. 

 
Figure  4–10: Joint implementation of the SubBytes and the InvSubBytes transformations 

Since both M and M –1   are binary matrices, the matrix multiplication block can be 
implemented simply by XOR gates. Another approach is to store the value of S- box 
and S–1-box in two separate ROMs, and read the initial values into RAMs at the 
beginning of encryption/decryption [31]. This approach eliminates the duplicated 
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memory by 2 additional ROMs, but introduces an over- head of 256 clock cycles to read in 
the initial values. 

4.3.2. Resource Sharing in MixColumns and InvMixColumns 

Although  equation ( 4.10)  leads  to  an  InvMixColumns  implementation  with 
neither  the  shortest  delay  nor  the smallest area, combined with equation (4.8), it 
leads to the hardware implementation with least area of joint MixColumns/ 
InvMixColumns transformation. Figure  4–11 illustrates the diagram according to 
equations (4.8) and (  4.10). The four inputs, ‘a’, ‘b’, ‘c’, ‘d’, and two outputs, ‘mix’ and  
‘invmix’,  all  represent  single bytes. ‘a’, ‘b’, ‘c’, ‘d’ are the four bytes in a column of the 
State with ascending row numbers. ‘Mix’ and ‘invmix’ are   the   outcomes   of   
applying MixColumns and InvMixColumns transformation to the inputs, respectively. 
The block diagram for applying MixColumns and InvMixColumns to the bytes in other 
rows can be obtained by exchanging the position of the input bytes according to equations 
(2.22) and ( 2.24).  

Figure  4–12 shows the diagram of applying MixColumns and InvMixColumns 
transformations to one column of the State.  Each of the JointMix blocks consists of the 
diagram in Figure  4–11. ‘Mixword’ is the output of applying the MixColumns 
transformation to the ‘inword’, and ‘invword’ is the output of applying the 
InvMixColumns transformation to the ‘inword’.  The ‘outword’ gets the value of 
‘mixword’ when ‘enc’ = ‘1’, which indicates encryption mode, and gets the value of 
‘invword’ otherwise. 

 
Figure  4–11: Joint implementation of the MixColumns and the InvMixColumns 

transformations (bytes in the first row of the State) 
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Figure  4–12: Joint implementation of the MixColumns and the InvMixColumns 

transformations (one column in the State) 

4.3.3. Resource Sharing of Generating Roundkeys in Encryption and Decryption 

In the applications with limited area, generating roundkeys on the fly is a better choice. 
Paper [33] proposed an efficient architecture which can generate roundkey(i + 1) from 
roundkey(i) and vice versa. This architecture is illustrated in Figure  4–13. 

In Figure  4–13, each of the ‘roundkey’ and the ‘next-roundkey’ consist of four words. 
Assuming  the  ‘roundkey’ is expressed by four words as (w4i, w4i + 1, w4i + 2, w4i + 3), the 4 
sets of XOR gates from left to right get w4i, w4i + 1, w4i + 2, and w4i + 3 as one of the inputs 
from the ‘roundkey’ bus,  respectively.  The RotSub block in Figure  4–13, which per- 
forms RotWord followed by SubBytes transformation, is made up of 4 S-boxes. Since 
all the lower bytes of the round constant Rcon are zeros, the step of adding round constant 
only needs to be performed on the most significant byte. Meanwhile, Rcon(i+1) equals 
{02}Rcon(i) (1 ≤ i < Nr – 1). 

 
Figure  4–13:  Joint implementation of Key Expansion in encryptor and decryptor. 
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Rcon(i+1) can also be generated on the fly from the stored Rcon(1) = {01}. When ‘enc’ is 
‘1’, which stands for encryption mode, w4i + 3 is loaded into the RotSub  block,  after  the  
output  of RotSub  block  was  XORed  with Rcon(i) and w4i, w4(i + 1)  is generated at the 
output of the first XOR gate on the left. Consequently, w4(i + 1) + 1, w4(i + 1) + 2, and w4(i + 1) + 3  are 
generated one by one as the updated data propagates through each multiplexer from left to 
right. When ‘enc’ is ‘0’, w4i + 3  ⊕ w4i  + 2  = w4(i – 1) + 3  (0 < i ≤ Nr) is loaded into the RotSub  
block,  after  the  output  of RotSub  is  XORed  with  Rcon(i),a  temporary  value  
temp  =  Sub- Word(RotWord(w4(i – 1) + 3)) ⊕ Rcon(i) is fed back to the leftmost XOR 
gate in Figure  4–13. w4(i – 1)  = w4i  ⊕ temp is generated after an XOR gate delay. As the 
updated data propagates through each of the  multiplexers, w4(i – 1) + 1, w4(i – 1) + 2, and w4(i – 1) + 3   

are generated in a sequence. 
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C h a p t e r  5  

SUBBYTES TRANSFORMATION OPTIM IZATION 
METHODS 

Modern symmetric ciphers require non-linear functions in order to defend against 
linear cryptanalysis. Substitution is a popular function for introducing non-linearity. A 
substitution function is commonly referred to as S-box and can be defined on basis of 
arithmetic operations or as an arbitrary mapping. Different cipher algorithms also use 
different numbers of S-boxes, e.g. DES uses eight S-boxes which map six to four bits, 
while AES uses a single S-box which is a bijective mapping from eight to eight bits. 

The AES algorithm makes use of its S-box in the SubBytes round transformation as 
well as in the key expansion. From a mathematical point of view, the AES S-box is 
defined as an inversion in the finite field GF(28) with a specific reduction polynomial, 
followed by an affine transformation. The inverse S-box, which is required for the 
InvSubBytes round transformation for decryption, is simply the inverse of the affine 
transformation, followed by an inversion in GF(28) as described in section  2.5.1. The 
finite field inversion is the only non-linear operation of the AES algorithm. Since there 
are many design options for the S-box in hardware, it is challenging to find an optimal 
implementation for a particular purpose. On the one hand, the main criterion for high-
speed implementations is a short critical path, which allows reaching high clock 
frequencies. On the other hand, S-box implementations for embedded devices call for 
small silicon area and low power consumption. Several hardware implementations of the 
nonlinear step are possible, and there is no evident best general solution. We could exploit 
the particular features of the ASIC technology library or FPGA platform to limit area 
occupation for the S-box component, which is critical to the success of the 
implementation. 

Because the S-box is based on an operation of inversion in the finite field GF(28), we 
can propose different architectures. A broad classification divides all the possible 
implementations in two main categories: serial architectures and parallel architectures. 
While it is true that serial architectures could lead to compact circuits, in the following, 
we will focus on parallel ones, assuming that the dedicated round logic computes one 
round of the algorithm in one clock cycle with 16 S-boxes instantiated, one per each State 
byte. Even if this is not the case, we can pipeline a completely combinatorial 
implementation by inserting registers to obtain an enhanced throughput, multi-cycle 
architecture. Section   4.1 shows that such pipelined combinatorial architectures tend to be 
very efficient in terms of both area requirements and delay when mapped to commercial 
FPGA units. 

In many AES implementations two sub-steps required in the SubBytes transformation 
are typically combined into a single lookup table. The table size is 16 by 16 with the 
content 8 bits in length. The ROM size of 256×8 bit is not big for current technology and 
can be implemented in a fairly simple manner with modern design tools. The ROM design 
will achieve a high speed S-box and we will use it in the design of the optimized speed 
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AES. However when the area is restricted or a ROM cannot be incorporated, the inversion 
hardware becomes necessary. Within this scenario, the efficient S-box implementation is 
the major concern. The affine transformation however requires small number of gates and 
introduces small delays. 

Several techniques for S-box computation have been developed. These are, for 
instances: 

1) The mentioned above table look up where step 2 is usually combined to be a single 
table. 

2) Synthesis and optimized logic function of S-box using CAD tools. 
3) Compute the inversion of element in GF(28) and optimize the logic functions. 

 In the computation of element inversion in GF(2k) one can use either extended Euclid 
algorithm [43, 44] or composite field technique [38, 45, 46, 47, 48]. The use of composite 
field in the S-box computation has been reported in literatures [38, 47, 48]. Rudra et al. 
[47, 49] mapped all the operation (except ShiftRows) into the composite field of GF(24)2

 . 
Multiplication, squaring and inversion are borrowed form those detailed in [50]. Morioka 
and Satoh [48] also have exploited the used of composite field in the design of a low 
power S-box transform. Elements in GF(28) are mapped to those defined in GF((22)2)2. 
Multiplication and inversion are optimized in the ground field. Rijnmen [38] also 
mentioned the computation of inversion in GF(24). 

In our design for optimized speed AES we will use the ROM design for the S-box 
which is considered the most efficient approach and achieves the least delay with 
comparison with other designs. In this chapter we will explain an area efficient approach 
which we will use in the design of the S-box for optimized area AES. This approach is 
cited in the paper An Architecture for S-Box Computation in the AES [51]. This approach 
depends on the mapping of the Elements in GF(28) to those defined in GF((22)2)2. 
Multiplication and inversion are optimized in the ground field.  

5.1. An Efficient S-box Computation 

In the case of Rijndael, the field polynomial m(x)= x8+x4+x3+x+1 has been chosen. It is 
an irreducible polynomial in GF(28) but not a primitive one. We first have to map 
elements in GF(2k) into GF(2n)m where k=mn. A method elaborated in [47] is again 
summarized here. 

1. Let α be a primitive element of GF(2m)n, and γ be a primitive element of GF(2k) , 
such that field isomorphism holds. 

2. Map αi to γi for iЄ{0,...,(2k−1)}. 
3. Check whether ∀ i Є{0,...,(2k −1)} , if αr=αi+1 then γr=γi+1 . If so, we then have the 

required mapping, otherwise we have to search for the next primitive element. 
4. The inverse mapping can be easily found by matrix inversion, i.e., if [T] is a 

mapping matrix, [T]-1 is an inverse mapping matrix. 

With above procedure, we select the polynomial p(x)= x2+x+β14 where β14 denotes the 
element in GF(24) of which I(x)=x4 +x+1 is the primitive irreducible polynomial. As a 
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result, the transform matrices that map an element in GF(28) to the corresponding element 
in the composite field GF(24)2 or vice versa are obtained as follow. 

  

1 0 1 1 1 0 1 1
0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1
0 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  ( 5.1)  

And 

  
1

1 0 0 0 1 0 1 0
0 0 0 0 1 1 0 1
0 1 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 1 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 1 1 1 0 1 1 1
0 0 1 0 0 1 0 0

T −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  ( 5.2)   

The upper–left element in the above matrices denotes the least significant bit. An 
Advantage of mapping elements form GF(28) to GF((24)2) is the simpler multiplicative 
inverse computation since inversion is performed in GF(24) . For such a small field size, 
inversion using either the direct truth-table mapping or table look up consumes small area. 
Moreover, in Rijndael system data are treated naturally in byte format. Let data (byte) be 
expressed as 

{ }A bc bx c= = + , the inversion of A , say 
-1 { }B A pq px q= = = + . For the field polynomial 

2( )p x x Cx D= + + , One can have 
-1  p b= Δ      ( 5.3) 

    
-1( )q Cb c= ⊕ Δ     ( 5.4) 

   Where 

    
2( )c Cb c b DΔ = ⊕ ⊕     ( 5.5) 

   Or   
    

2 2bcC c b DΔ = ⊕ ⊕     ( 5.6) 

For GF((2n )2) , the polynomial in the form of p(x) = x2 + x +λ always exists [45]. As 
such, C and D can be set to {1} and {9} (in GF(24)) respectively. Fixed-coefficient 
multiplication (i.e., b2D) as well as squaring units is relatively simple according to their 
small field size. The multiplications required in computing equations (5.3), ( 5.4) and ( 5.5) 
can be done straight away in GF(24) or can be further simplified by making use of 
composite field GF((22)2) [48]. Borrowed form [45], in our implementation, we use 
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polynomials p(x)=x2+x+σ2 and I(x)= x2 +x+1 for the computations in GF((22)2) and 
GF(22) respectively. 

In GF((22)2), let 0 1( )U x u u x= + and  0 1( )  V x v v x= + , then  

mod  ( ) 0 1( ) ( ) ( ) p xZ x U x V x z z x= = +    ( 5.7)    
Where 

   
2

0 0 0 1 1z u v u vσ= ⊕      ( 5.8)   

   1 0 1 1 0 1 1z u v u v u v= ⊕ ⊕     ( 5.9)   
  Where ui ,vi ,σ2 Є GF(22). 

In the (forward) SubBytes transformation, the inversion is followed by the affine 
transformation given previously in Section  2.5.1. This step can be combined with the 
inverse mapping and a single logic block is obtained. The resulted matrix is noted in 
equation ( 5.10). Regardless of the hardware reusable, the resulted matrix cannot be shared 
by the inverse SubBytes transformation. 

1

0 1 0 0 1 0 0 1
1 0 0 1 1 0 1 1
0 1 1 1 1 1 0 1
0 1 0 1 1 1 0 0
1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 0 0 1 1 1 1 1

T D−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  ( 5.10)  

In the decryption process, the inverse affine transform can be expressed as: 

{ } 8mod( 1)( ) 4 ( ) ( )xb x A d x c x
+

= ⊕     ( 5.11)   

Where c(x)={05}=x2+1. This process has to be performed in prior to the (inverse) 
SubBytes transformation. Similarly, the affine transformation can be merged with the 
(forward) mapping. The resulted matrix noted in equation ( 5.12) is obtained. The 
combined matrices given in equations ( 5.10) and (5.12) are individual. The combined 
scheme can result in a slightly compact hardware but not applicable to the restricted 
hardware size application (such as in smart card) where a single inversion circuit is 
utilized by the ciphering and the deciphering procedures. 

  

0 1 0 0 0 1 0 0
0 0 1 1 0 1 1 0
0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 1
1 1 1 0 1 1 1 1
0 0 0 1 1 1 1 0
1 0 0 0 1 1 1 0
0 1 1 0 0 0 1 1

TB

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  ( 5.12)  
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5.2. Bit-parallel architecture of standard and composite field operations 

In this section we will illustrate the bit architecture for the operations described in 
Section  5.1 [51].  

5.2.1. GF(28) Computations 

1. Inversion in GF((24)2) ; p(x)=x2+x+β14  b,c,p,q are elements in GF(24 ) 
A(x)=bx+c ; B(x)=A−1(x)=px+q 
p=bΔ−1 , q =(b ⊕ c)Δ−1; Δ=β14b2 ⊕ bc ⊕ c2 . 

5.2.2. GF(24) Computations  

1. Multiplication in GF(24) , I(x)=x4 +x+1 To compute C(x)= A(x)B(x)mod I(x) where 

  
( ) ( ) ( )

( ) ( )

4

0 0 0 3 1 2 2 1 3

1 1 0 0 1 3 1 3 2 2 2 2 3 1 3

1 0 0 3 1 2 3 2 1 2 3

2 2 0 1 1 0 2 3 2 3 3 2 3

2 0 1 1 0 3 2 2 3 3

3 3 0 2 1 1 2 0 3 3 3

3 0 2 1

, , (2 )i i ia b c GF
c a b a b a b a b
c a b a b a b a b a b a b a b

a b a a b a a b a a b
c a b a b a b a b a b a b

a b a b a a b a a b
c a b a b a b a b a b

a b a b a

∈
= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ( )1 2 0 3 3b a a b⊕ ⊕

 

2. Multiplication in the composite field GF((22)2) ,where p(x)=x2+x+σ2 
U(x) = u0+ u1x , V(x) = v0+ v1x and Z(x) =U(x)V(x)mod p( x) = z0+z1x , where 
zi ,ui ,vi Є GF(22 ). 
z0=u0v0 ⊕ σ2 u1v1    and   z1=u0v1 ⊕  u1v0 ⊕  u1v1  

3. Squaring; B(x) = A(x)A(x)mod I(x) ,   I(x)=x4 +x+1    
 b0=(a0 ⊕ a2) ,b1=a2,b2=(a1 ⊕ a3),b3=a3 

4. Fixed-coefficient multiplication; To compute C(x) = β14B(x)mod I(x) where   
 I(x) =x4+ x +1  c0=(b0 ⊕ b1),c1=b2,c2=b3,c3=b0 

5. To compute C(x) = A2(x)β14mod I( x) ; Combine 3) and 4) above   
 c0=a0 ,c1=(a1 ⊕ a3),c2=a3,c3=(a0 ⊕ a2) 

6. Inversion; C(x) = A−1(x) , I(x)=x4 +x+1 

  

( ) ( )
( ) ( ) ( )

( )
( ) ( )

0 2 3 2 0 1 1 2 0 3

1 0 1 2 1 2 3 3 0 1

2 0 2 3 0 1 0 2 3

3 1 0 2 3 1 0 2 3

c a a a a a a a a a

c a a a a a a a a a

c a a a a a a a a

c a a a a a a a a

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

 

5.2.3. GF(22 ) Computations, I(x) = x2 + x + 1 

1. Multiplication in GF(22 ) To compute F(x) = g(x)h(x)mod I(x) 
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  0 0 0 1 1

1 0 1 1 0 1 1

f g h g h
f g h g h g h

= ⊕
= ⊕ ⊕

 

2. Fixed-coefficient multiplication;  
Z(x) = σ2U(x)mod I(x)  z0=(u0 ⊕ u1),z1=u0 

3. Squaring; C(x) = A2(x)mod I(x) 
c0=(a0 ⊕ a1),c1=a1 

4. Inversion; C(x) = A−1(x) 
c0=(a0 ⊕ a1),c1=a1 

5.3.  IMPLEMENTATIONS 

The implementation of the SubBytes transformation formulated earlier in section  5.1 is 
detailed in this section. 

Gate count and delay time of the designs with different architectures are investigated. 
Many related mathematic equations are given as appendix for convenience of referring. 
The inversion of elements in the S-box operation has been reported of its most power 
consuming compared to others (i.e., 75% [48]). We thus look at this operation in quite 
details. The S-box computation can be divided into 3 blocks as shown in Figure  5–1-a. 
The affine transform and the inverse mapping could be combined as mentioned earlier. 

 
Figure  5–1: S-box Computation and Inversion in GF((24)2) 

Shown in Figure  5–1-b, the inversion in GF(28) are performed in the composite field, 
GF((24)2) . Three GP multiplications, two squaring, a fixed-coefficient multiplication and 
an inversion are involved. There are slight differences of the implementation of Figure  5–
1. One can choose either equation ( 5.5) or (5.6). The differences are gate count, wiring 
complexity and critical data path. We chose (5.6) because of its smaller delays compared 
to that offered by ( 5.5). It also should be noted that the operation b2β14 could be combined 
into a single logic block (see Section  5.2.2). 

A direct implementation of a general purpose multiplier (see Section  5.2.2) can result 
in a complexity of 16 AND and 10 OR, and with the delay time of 3τ. 
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Figure  5–2: Multiplication in GF((24)2) 

The same multiplier can be also implemented using the composite field technique. This 
is shown in Figure  5–2 (see also Section  5.2.2). The complexity is 16 AND, 14 OR, and 
with the delay time of 3τ. Similarly the inversion in GF(24) can be implemented directly 
as given in (see Section  5.2.2)) [29]. The complexity is 11 AND, 11 OR, 5 INV, and with 
the delay time of 3τ. This inversion can be implemented in the composite field GF((22)2) . 
The similar scheme as that shown in Figure  5–1-b is reapplied. The complexity is 12 
AND, 9 OR and with the delay time of 4τ. Regardless the inserted delays, the above 
discussed inversion in GF(28) is summarized in Table  5–1 below. 

Table  5–1: Complexity of GF(24)2) inversion 

 

The field mapping denoted by equations ( 5.1) and (5.2) above can be easily 
implemented with about 16 XORs as shown in Figure  5–3. If one needs the combined 
mapping noted by equations (5.10) and ( 5.12) can be implemented similarly. 
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Figure  5–3: Field Mapping (a) and Inverse Mapping (b) 

5.4. Comparison between difference S-box Implementations 

Table  5–2 shows a performance comparison of various S-Boxes in 0.18_m ASIC 
libraries including our used method [48].  

Table  5–2: Comparison of various S-Box architectures (0.18 _m 1.8 V CMOS 
standard cell, 1 gate = 2 way-NAND) 

 Delay (ns)  Size (gate)  
Itoh and Tsujii [14]  4.11  1,540  

PPRM (1-stage)  1.32  2,242 
Twisted-BDD [17]  0.66  1,977 

BDD  0.96  857 
Table look-up  0.91  1,706 

Composite Field  3.01  305 
SOP (1-stage)  0.97  1,142 
Satoh Morioka 1.86  701 

As shown in the above table the S-box designed with composite field architecture has 
the minimum number of gates, but it also has a large delay when compared with other 
methods, so we will choose it in the design of the optimized area AES.  
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C h a p t e r  6  

Hardware Implementation of AES 

Hardware implementations of cryptographic algorithms have a long history. 
Traditionally, algorithms were implemented in hardware to achieve a higher speed than 
with implementations in software. The requirements of contemporary and future 
Applications however, demand often other properties of hardware implementations. 

Today we can identify two application scenarios where hardware implementations are 
advantageous over software implementations. Firstly, these are high-speed applications 
where a cryptographic co-processor performs the cryptographic operations in order to 
relieve the rest of the system. Secondly, these are applications where low power and low 
area requirements are stringent. In both application scenarios, the secure storage of keys is 
important. 

The AES has been the topic of much research to find suitable architectures for its 
hardware implementation. Architectural choices for a given application are driven by the 
system requirements in terms of speed and the resources consumed. This can simply be 
viewed as throughput and area; however, latency may also be important as may the 
cipher’s mode of operation. The FIPS-197 specification details a number of modes of 
operation for the cipher, for example, the simplest is the Electronic Code Book (ECB). 
Additional resilience to attack can be gained by using one of the feedback modes, for 
example, Output Feed Back (OFB) mode unfortunately such modes also limit the 
effectiveness of pipelining. 

6.1. Introduction to Digital VLSI Design on FPGAs 
In this section we will give a brief introduction to Digital VLSI design cycle using HDL 
(Hardware Description Languages) and FPGAs (Field Programmable Gate Arrays)    

6.1.1. Introduction to Digital VLSI Design  

Traditionally, digital design was a manual process of designing and capturing circuits 
using schematic entry tools. This process has many disadvantages and is rapidly replaced 
by new methods [52]. 

System designers are always competing to build cost-effective products as fast as 
possible in highly competitive environment. In order to achieve this, they are turning to 
using top-down design methodologies that include using hardware description languages 
and synthesis, in addition to just the more traditional process of simulation. A product in 
this instance is any electronic equipment containing ASICs or FPGAs. 

In recent years, designers have increasingly adopted top down design methodologies 
even though it takes them away from logic and transistor level design to abstract 
programming. The introduction of industry standard HDLs and commercially available 
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synthesis tools have helped establish this revolutionary design methodology. Some of the 
advantages are: 

• Increased productivity yields shorter development cycles with more product 
features and reduced time to market. 

• Reduced non-recurring engineering costs. 
• Design reuse is enabled. 
• Increased flexibility to design changes. 
• Faster exploration of alternative architectures and technology libraries. 
• Enables use of synthesis to rapidly sweep the design space of area and timing, and 

to automatically generate testable circuits. 
• Better and easier design auditing and verification. 

6.1.2. Top down design methodology 

In an ideal word, a true top-down system level design methodology would mean 
describing a complete system at an abstract level using a HDL and the use of automated 
tools, for example, partitioners and synthesizers. This would drive the abstract level 
description to implement on ASICs or FPGAs. 

A top down design methodology takes the HDL model of hardware, written at a high 
level of behavioral abstraction (system or algorithmic) Down through intermediate levels, 
to a low (gate or transistor) level as shown in Figure  6–1. 

 
Figure  6–1: Behavioral level of abstraction pyramid 

The term behavior represents the behavior of intended hardware and its independent of 
the level of abstraction by which it is modeled. A design represented at the gate level still 
represents the behavior of hardware intent. As hardware models are translated to 
progressively lower levels they become more complex and contain more structural detail. 
The benefit of modeling hardware at higher levels of behavioral abstraction is that 
designers are not overwhelmed with large amount of unnecessary details and complexity 
of design task is reduced. Figure  6–2 shows how the different behavioral levels of 
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abstraction overlap between the design-domains of pure abstraction, structural 
decomposition and physical implementation. 

 
Figure  6–2: Design domain for different levels of design abstraction 

6.1.3. Introduction to FPGA technology 

The use of FPGA has been expanding from its traditional role in prototyping to 
mainstream production. This change is being driven by commercial pressures to reduce 
design cost, risk and achieve a faster time to market. Advances in technology have 
resulted in mask programmed mass produced versions of FPGA fabrics being offered by 
the leading manufacturers which, for some applications, remove the necessity to move 
prototype designs from FPGA to ASIC whilst still achieving a low unit cost [53]. 

The Xilinx Virtex family is the most used FPGA series in academia concerning 
cryptographic implementations. This section will give some more detailed description, 
about FPGA in general and the chips used in the cited contributions. 

The original 2.5-Volt Virtex family was introduced in 1998 offering features, like 
Block RAM, Distributed RAM and High-speed external memory interfaces, Delay-
Locked Loops (DLLs), and SelectI/O. The Virtex-E family, introduced in 1999, delivers 
more RAM, more DLLs, the SelectLink technology and high speed differential signaling. 
Virtex-4 and Virtex-5 FPGAs are the high end chips offered by Xilinx. 

One of the biggest architectural differences between FPGAs and CPLDs is that FPGAs 
have an array of many small logic blocks with vast interconnection networks, while 
Complex Logic Device (CPLDs) have a few large logic block based on PALs, with 
smaller interconnection networks. Hence, FPGAs exist of three main components: 
Configurable Logic Blocks (CLBs), interconnections, and I/O blocks (see Figure  6–3). 
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Figure  6–3: Structure of the Virtex FPGA 

FPGA technology is usually based on SRAM, flash, EEPROM or anti-fuse 
interconnections. The Virtex family is based on SRAM technology. The I/O blocks of 
FPGAs are very similar to the I/O pads in an ASIC and act as buffers to the outside world. 
The CLBs are the core logic element in an FPGA. The main block in a Virtex CLBs is the 
logic cell (LC). Each Virtex CLB contains of four LCs, organized in two similar slices. 
An LC includes a 4-input function generator, carry logic, and a storage element. The 
output from the function generator in each LC drives both the CLB output and the D input 
of the flip-flop. The slice includes 4-input look-up tables (LUTs), which are the function 
generators of the CLB. Each LUT can provide a 16 x 1-bit synchronous RAM and the two 
LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous 
RAM, or a 16x1-bit dual-port synchronous RAM. The F5 multiplexer provides the ability 
to combine the function generator outputs, either to a function generator (implementing 
any 5 input function), to a 4:1 multiplexer, or to a selected functions of up to nine inputs. 
F6 multiplexer combines the outputs of all four function generators in the CLB by 
selecting one of the F5 multiplexer outputs. This permits the implementation of any 6-
input function, an 8:1 multiplexer, or selected functions of up to 19 inputs. The XOR gate 
provides the possibility to implement a 1-bit full adder in one LC and the AND gate 
allows a efficient multiplier implementation.  
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Moreover, large block of RAM memories which are organized in columns are 
provided. Virtex devices have two columns that extend the full height of the chip. Each 
memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high 
contains 16 memory blocks per column, and a total of 32 blocks. 

6.2. Hardware Basic Decisions and Considerations 

AES algorithm has many architectures, key sizes and modes of operation. In our 
implementation of the algorithm we have make some decisions and considerations based 
on the optimization goal (Area/ Speed). In this section we state the decisions and 
considerations which we will use in our implementation for Optimized Area/ Speed AES:  

• We only consider 128-bits key size, which means that we will have only ten Enc/ 
Dec rounds.  

• We make separate implementations for both encryption and decryption modules 
based on that many applications have a separate transmitter and receiver. 

• In our Implementation of the AES algorithm with a small area we will select the 
basic reference architecture (see Section  4.1.1) which needs the implementation of 
one round only and re-use it to complete the ten encryption rounds, we also 
designed the Encryptor/ Decryptor to complete one encryption round in one clock 
cycle so the output of the Encryptor/ Decryptor will be valid after ten clock cycles 
from the data entrance. 

• In our Implementation of the AES algorithm with a high speed we will select the 
pipelined architecture with (K=Nr=10) ten rounds (see Section  4.1.1). This design 
will allow to us to update the input data each clock cycle but it will increase the 
area about ten times larger than optimized area AES.  

• Another basic architecture decision we had make was the key schedule architecture. 
There are two ways for generating the round keys for encryption, either by 
generating all the sub-keys beforehand and storing them in a buffer, or generating 
all the sub-keys on the fly in parallel with the encryption module.  Since buffer 
storage could take up substantial amount of space, we decided to generate the sub-
keys on the fly during encryption. For the encryptor we implement the hardware 
required to generate one set of sub-key and re-use in the calculation of other the 
sub-keys, and at the same time also use one clock cycle for one sub-key generation.  
 For the decryptor we must generate the last sub-key first to use it in the first 
decipher round, so we couldn’t use the same key expansion architecture used with 
cipher and we must select one of the other architectures either by generation of all 
sub-keys beforehand and storing them in a RAM, or by generation of all sub-keys 
using pipelined architecture.  

• Another decision we had make was about the mode of operation. There are many 
modes of operation of the AES block cipher, and this modes are classified into two 
major classes: feedback and non-feedback modes (see Section  2.2.1), in our design 
we will concern in non feedback mode of operation ECB (Electronic code book)  

• Our hardware designs have been encoded in VHDL’93, and targeted on a Xilinx 
Virtex 4 FPGA. We use Xilinx ISE 7.1i and modelsim programs for simulation, 
synthesis, place and route for my designs.  
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6.3. Optimized Area AES Encryptor/ Decryptor  

For optimized area AES our goal is to implement AES encryptor/ decryptor with a 
small area which it could be used in smart cards and other applications which required a 
high security with minimum resources. In this section we will illustrate the hardware 
architecture of cipher, decipher and key expansion units and then we will present my 
simulation, synthesis and implementation results. 

6.3.1. Hardware Architecture 

6.3.1.1. Cipher/ decipher Hardware Architecture 

As shown in Figure  6–4  we use the basic architecture for the Cipher/ Decipher Module 
which consists of:  

1. A multiplexer which is used to 
choose between the plaintext and the 
data output from the cipher round. 
In our design the multiplexer 
selector is controlled by a counter to 
allow plaintext to pass each ten 
clock cycles and allows the output 
data of cipher round to pass during 
this ten clock cycles. 

2. 128-bits register which is used to 
hold the output data of the 
multiplexer to use it as input to the 
cipher round. 

3. Cipher round which is used to make 
one round of encryption and output 
cipher data after ten clock cycles. 

 
Figure  6–4: Optimized area cipher/ 

decipher Architecture 

6.3.1.2. Key Expansion Hardware Architecture 
The cipher key expansion module 

shown in Figure  6–5 has the same 
architecture as cipher module, and this 
architecture is used to generate four 
words (only one sub-key) each clock 
cycle in parallel with cipher. This 
architecture of key expansion module has 
the ability of changing the encryption 
key each ten clock cycles (which means 
that we can encrypt each Plaintext with a 
different key) and this is consider an 
advantage when compared with the other 
architecture which generates all sub-keys 
and stores them in RAM. 

 
Figure  6–5: Cipher key expansion 

architecture
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The decipher key expansion module shown in Figure  6–6 uses one key expansion 
round and Nr 128 bits registers (RAM), and it could be used for both encryption and 
decryption modules if we want to make resources sharing in case of design the same chip 
for encryption and decryption. Also this architecture could be used for other architectures 
of the AES such as pipelined or loop unrolled architecture. 

 
Figure  6–6: Decipher key expansion architecture 

6.3.1.3. Cipher/ Decipher Round Architecture 

AES cipher round can be divided into four basic operation blocks which operates on 
array of bytes, organized as a 4×4 matrix called the state as mentioned before. Four basic 
steps, called layers consist of the SubBytes transformation, the ShiftRows transformation, 
the MixColumns transformation, and AddRoundKey (see Section  2.5) as shown in Figure 
 6–7-a. 

1. The SubBytes transformation: Non-linear byte substitution which is composed of 
multiplicative inverse and affine transformation. We use the composite field 
method described in Section  5.1 in our implementation of this transformation which 
will save the area but it will increase the delay.    

2. The ShiftRows transformation: Linear diffusion process, operating on individual 
rows. Depending on the row location, offset of left shift varies from zero to three 
bytes. 

3. The MixColumns transformation: Matrix multiplication over GF (28). Column 
vector is multiplied with a fixed matrix where the bytes are treated as a polynomials 
rather than numbers. We use the method of substructure sharing described in 
Section   4.2.3 in our implementation for this transformation which has the 
advantages of low area and high speed.  

4. AddRoundKey: Simple byte XOR operation with the round key. 
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These four layer steps describe one round of AES. A 128 bit round sub-key, used in 
AddRoundKey operation, is generated by the key schedule.  

Excluding the first and the last round, AES encryption round executes nine iterations. 
First round of the encryption step performs XOR with the original key and the last round 
skips MixColumns layer. 

All four layers described above have corresponding inverse operations such that the 
decryption is simply the reverse order operations of these inverse transformations as 
shown in Figure  6–7-b. 

S u b B y t e s

S h i f t R o w s

M ix C o lu m n s
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C ip h e r  T e x t
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C ip h e r  T e x t

b .  D e c ip h e r  R o u n d  

S u b - K e y

P la in  T e x t

A d d R o u n d
K e y

A d d R o u n d
K e y

 
Figure  6–7: a. Cipher Round,   b. Decipher Round 

6.3.1.4. Key Expansion Round Architecture  
Key expansion Round can be divided into 

the following operations which operates on 
array of four words (see section  2.6) as 
shown in Figure  6–8. 

1. RotWord transformation: A simple rotate 
operation which rotates the word one byte 
to the right. 

2. SubWord transformation: Each byte in the 
word is substituted by the SubBytes 
transformation. 

3. XOR: Simple word XOR operation. 
 
 
 
 
 

 
Figure  6–8: Key Expansion Round 

Architecture 

   Note that Rcon[i] are constants depend on the round number. 



 82 

6.3.2. Hardware Implementation Results 

6.3.2.1. Encryptor/ decryptor Circuit 

Figure  6–9 and Figure  6–10 shows the encryptor and decryptor top level entities and 
Table  6–1 shows names, modes and functions of signals used in the design of optimized 
area AES encryptor and decryptor 

 
Figure  6–9: Encryptor Top level Entity 

 

 
Figure  6–10: Decryptor Top level Entity 
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Table  6–1: Encryptor/ decryptor signals names and functions 
Signal Name Type Signal Function 

a. Encryptor/ Decryptor 
Input Data 
(127:0) Input 128-bits data input to cipher (plaintext)  or to 

decipher (ciphertext) 
Input Key 
(127: 0) Input 128-bits input key used in generation of sub key 

words 
Reset Input Active high asynchronous reset signal  

Start Input 

Active high asynchronous start signal used to start 
the cipher/ decipher key expansion unit which will 
be used in the interface of the encryptor/ decryptor 
and external peripheral 

Clock Input Positive edge clock for the encryptor/ decryptor 
Output Data 
(127:0) Output 128-bits data output of cipher (ciphertext)  or of 

decipher (plaintext) 

Enc Done, 
Dec done  Output 

Active high output signal when the output of the 
encryptor or the decryptor is ready which will be 
used in the interface of the encryptor/ decryptor 
and external peripheral   

SubWord 
(i:i+3)   Internal

Four sub words used in encryptor/ decryptor round 
which changes each clock cycle where i depends 
on the present round number 

Sub Word 
Ready Internal Active high signal acts as a start signal for the 

cipher/ decipher unit 
b. Decryptor 

Sub Word 
(0:43) Internal All the 44 sub words output of the decipher key 

expansion unit 

Sub Words 
Ready Internal

Active high signal indicates that all key sub words 
are ready which will be used as a start signal to the 
control counter 

Enable Internal
An enable signal to the sub words Multiplexer 
which will be used to start output the four sub 
words which will be used in the decipher unit.  

6.3.2.2. Functional Simulation Results 

Figure  6–11and Figure  6–12 shows the functional simulation results for the optimized 
area AES encryptor and decryptor. As shown in Figure  6–11 we initially apply the AES 
test vector data to the input and key, we got the correct output data (as test vector output) 
[] after Nr (10) clock cycles as mentioned in section  6.2. Then we apply a random input 
data changes each ten clock cycles and we found that the output data responds to the input 
change which means that the encryption and decryption process is done one time each Nr 
(10) clock cycles. The decryptor test shown in Figure  6–12 is similar to the encryptor test 
with one difference in the delay between input and output (2Nr (20) clock cycles) which 
consists of the combination of the sub key words generation delay (Nr (10) clock cycles) 
and the decryption required time (Nr (10) clock cycles). 
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Figure  6–11: Behavioral simulation of optimized area AES Encryptor 

 

 
Figure  6–12: Behavioral simulation of optimized area AES Decryptor 

6.3.2.3. Hardware Implementation Results 

Table  6–2 shows the hardware implementation results of the optimized area AES 
cipher and decipher internal transformations. It is clear that SubBytes transformation and 
its inverse consume about (75%-80%) of the area and also they have the largest delay. 
Also we can see that ShiftRows transformation and it inverse have no area or delay. One 
can see that the routing delay increase as the levels of logic increase (number of gates in 
the critical path) and this delay may becomes larger than the logic gates delay.    

Table  6–2: Implementation results for separate cipher/ decipher transformations 
Transformation Number of gates Maximum Delay  

a. Cipher Transformations 

SubBytes (State ) 

# XORs         : 1192 
 1-bit xor2     : 666 
 1-bit xor3     : 264 
 1-bit xor4     : 185 
 1-bit xor5     : 68 
 1-bit xor6     : 9 

8.580ns 
(2.086ns logic, 6.494ns route) 
(24.3% logic, 75.7% route) 
(Levels of Logic = 13) 
 

ShiftRows (state) 0 0 
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MixColumns (state) 
# XOR          : 176 
 1-bit xor2    : 160 
 8-bit xor4    : 16 

 

0.998ns 
(0.469ns logic, 0.529ns route) 
(47.0% logic, 53.0% route) 
(Levels of Logic = 2) 

AddRoundKey (state) 
# XORs        : 16 
 8-bit xor2    : 16 

0.322ns 
(0.322ns logic, 0.000ns route) 
(100.0% logic, 0.0% route) 
(Levels of Logic = 1) 

b. Decipher Transformations 

InvSubBytes (state) 

# XORs        : 1130 
 1-bit xor2    : 658 
 1-bit xor3    : 209 
 1-bit xor4    : 188 
 1-bit xor5    : 65 
 1-bit xor6    : 10 

7.255ns 
(1.792ns logic, 5.463ns route) 
(24.7% logic, 75.3% route)  
(Levels of Logic = 11) 
 

InvShiftRows (state) 0 0 

InvMixColumns (state)

# XORs        : 715 
 1-bit xor2    : 619 
 1-bit xor3    : 79 
 1-bit xor4    : 1 
 8-bit xor4    : 16 

2.703ns 
(0.910ns logic, 1.793ns route) 
(33.7% logic, 66.3% route) 
(Levels of Logic = 5) 
 

AddRoundKey (state) 
# XORs        : 16 
 8-bit xor2    : 16 

0.322ns 
(0.322ns logic, 0.000ns route) 
(100.0% logic, 0.0% route) 
(Levels of Logic = 1) 

Table  6–3 shows the FPGA device utilization and timing characteristics of the 
optimized area AES Encryptor and Decryptor. It is clear that decryptor area is larger than 
Encryptor which is mainly due to that Decipher Key Expansion unit have a large area 
when compared to the Cipher Key Expansion unit and also that the decipher area is larger 
than the cipher area.  

Table  6–3: FPGA (4vlx60ff668-12) device utilization and timing characteristics of 
optimized area AES  

a. Encryptor 

 Cipher Key 
Expansion Cipher Encryptor 

Number of Slices 452  out of  26624     
1% 

1151  out of  26624    
4% 

1468  out of  26624    
5% 

Number of Slice Flip-Flops 170  out of  53248     
0% 

290  out of  53248     
0% 

450  out of  53248     
0% 

Number of 4 inputs LUTs  856  out of  53248     
1% 

2194  out of  53248    
4% 

2799  out of  53248    
5% 

Minimum Period 
(Maximum Frequency)  

6.824ns  
(146.547MHz) 

7.774ns 
(128.636MHz) 

7.693ns 
(129.989MHz) 

Minimum input arrival time 
before clock 3.251ns 3.694ns 3.697ns 

Maximum output required 
time after clock 4.163ns 3.921ns 3.921ns 

b. Decryptor 

 Decipher Key 
Expansion Decipher Decryptor 
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Number of Slices 1175  out of  26624     
4% 

2366  out of  26624    
8% 

2752  out of  26624    
10% 

Number of Slice Flip-Flops 1651  out of  53248     
3% 

443  out of  53248     
0% 

2055  out of  53248    
3% 

Number of 4 inputs LUTs  815  out of  53248     
1% 

4459  out of  53248    
8% 

4801  out of  53248    
9% 

Minimum Period 
(Maximum Frequency)  

7.007ns 
 (142.709MHz) 

7.972ns 
(125.433MHz) 

8.009ns 
(124.863MHz) 

Minimum input arrival time 
before clock 3.851ns 3.654ns 3.750ns 

Maximum output required 
time after clock 4.007ns 3.921ns 3.921ns 

We can calculate the throughput of the Encryptor/ Decryptor From equation ( 4.1) 

   128 129.989 1.664
10

MHzEncryptorThroughput Gbps×
= =  

 128 124.863 1.598
10

MHzDecryptorThroughput Gbps×
= =  

6.4. Optimized Speed AES Encryptor/ Decryptor 

For Optimized Speed AES our goal is to implement AES Encryptor/ Decryptor with a 
high speed which it could be used in network routers and other applications which 
required a high security with a high speed.  

In this section i will illustrate the hardware architecture of cipher, decipher and key 
expansion unit which i used in my design and then i will present my simulation, synthesis 
and implementation results. 

6.4.1. Hardware Architecture 

6.4.1.1. Cipher/ decipher Hardware Architecture 

We use the pipelined architecture with k=Nr=10 for the Cipher/ Decipher Module as 
shown in Figure  6–13. Note that there is no multiplexer because we will not need for 
feedback because we implement all the Cipher/ Decipher rounds. 

6.4.1.2. Key Expansion Hardware Architecture 

For both of encryptor and decryptor we will use the architecture shown in Figure  6–14 
which is called on the fly architecture. This architecture consumes a large area but it has 
the advantage of the possibility of changing the input key each clock cycle, which means 
that we could update the key for each input data. 
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Figure  6–13: Optimized Speed Cipher/ 

Decipher Architecture 
 

 
Figure  6–14: Optimized speed Key 

Expansion Architecture

6.4.1.3. Cipher/ Decipher Round Architecture 

The Cipher/ Decipher round architecture will not differ from that used in the optimized 
area AES (see Figure  6–7). The difference will be in the transformations implementation 
methods. We will implement all transformations in the same methods like optimized area 
AES except the SubBytes/ InvSubBytes Transformation which will be implemented using 
the Look Up Table (ROM) method to decrease the delay. 

6.4.1.4. Key Expansion Round Architecture  

We will use the same architecture shown Figure  6–8 which is used in the optimized 
area AES. We will implement the SubWord Transformation using the ROM method.  

6.4.2. Hardware Implementation Results 

6.4.2.1. Encryptor/ decryptor Circuit 

Figure  6–15 shows the encryptor and decryptor top level entities which is similar to the 
optimized area AES top level entity with some differences in internal signals(Sub Key 
Words are 44 words and Sub Key Ready are ten signals one for each round). The signals 
names and functions are shown in Table  6–1. 
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Figure  6–15: Encryptor/ Decryptor top level entity 

6.4.2.2. Functional Simulation Results 

Figure  6–16 and Figure  6–17 shows the behavioral simulation results of the optimized 
speed AES encryptor and decryptor. As shown in Figure  6–16 we initially apply the test 
vector data and ensure that the output is correct, also we can see that we have Nr (10) 
clock cycles delay between input and output data. After this we apply a random data each 
clock cycle and we found that the output responds to the input data change. The decryptor 
test shown in Figure  6–17 is similar to the encryptor test with one difference in the delay 
between input and output (2Nr (20) clock cycles) which consists of the combination of the 
sub key words generation delay (Nr (10) clock cycles) and the decryption required time 
(Nr (10) clock cycles).   

 
Figure  6–16: Behavioral simulation of optimized speed AES Encryptor 
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Figure  6–17: Behavioral simulation of optimized time AES Decryptor 

6.4.2.3. Hardware Implementation Results 

As we mentioned before, all cipher/ decipher transformations will be same to the 
optimized area AES (see Table  6–2) except the SubBytes/ InvSubBytes transformation. 
Table  6–4 shows the implementation results of the optimized speed SubBytes and 
InvSubBytes transformations.  

Table  6–4: Optimized speed SubBytes and InvSubBytes implementation results 
Transformation Number of gates  Maximum Delay  

SubBytes (State ) #ROMs  :16
#256x8-bit ROM :16

1.274ns 
(1.274ns logic, 0.000ns route) 

(100.0% logic, 0.0% route) 
(Levels of Logic = 5) 

InvSubBytes (state) #ROMs  :16
#256x8-bit ROM :16

1.274ns 
(1.274ns logic, 0.000ns route) 

(100.0% logic, 0.0% route) 
(Levels of Logic = 5) 

Table  6–5 shows the FPGA device utilization and timing characteristics of the 
optimized speed AES encryptor and decryptor. It is clear that the decryptor has a larger 
area and delay than the encryptor because of the difference between the MixColumns and 
InvMixColumns transformation    

Table  6–5: FPGA (4vlx60ff668-12) device utilization and timing characteristics of 
optimized speed AES  

a. Encryptor 

 Cipher Key 
Expansion Cipher Encryptor 

Number of Slices 4877  out of  26624    
18% 

15625  out of  26624   
58% 

18855  out of  26624   
70% 

Number of Slice Flip-Flops 4002  out of  53248     
7% 

8753  out of  53248    
16% 

9814  out of  53248    
18% 

Number of 4 inputs LUTs  7769  out of  53248    
14% 

23925  out of  53248   
44% 

31682  out of  53248   
59% 

Minimum Period 2.752ns  3.689ns 4.490ns 
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(Maximum Frequency)  (363.346MHz) (271.076MHz) (222.700MHz) 

Minimum input arrival time 
before clock 2.882ns 5.299ns 5.991ns 

Maximum output required 
time after clock 0.272ns 0.272ns 3.921ns 

b. Decryptor 

 Decipher Key 
Expansion Decipher Decryptor 

Number of Slices 4877  out of  26624    
18% 

16947  out of  26624   
63% 

20155  out of  26624   
75% 

Number of Slice Flip-Flops 4002  out of  53248     
7% 

8790  out of  53248    
16% 

9565  out of  53248    
17% 

Number of 4 inputs LUTs  7769  out of  53248    
14% 

29313  out of  53248   
55% 

36369  out of  53248   
68% 

Minimum Period 
(Maximum Frequency)  

2.752ns  
(363.346MHz) 

4.748ns 
(210.604MHz) 

5.543ns 
(180.414MHz) 

Minimum input arrival time 
before clock 2.882ns 6.682ns 6.364ns 

Maximum output required 
time after clock 0.272ns 0.272ns 3.921ns 

We can calculate the throughput of the Encryptor/ Decryptor From equation (3.1) 

   128 222.7 28.51
1

MHzEncryptorThroughput Gbps×
= =  

 128 180.414 23.09
1

MHzDecryptorThroughput Gbps×
= =  

 

6.5. Comparison between Hardware Implementations of AES 

In this section we will first introduce a comparison between our optimized area and 
optimized speed AES followed by a comparison between our hardware implementation 
and other previous implementations for the AES on FPGAs. 

6.5.1. Comparison between Optimized Area and Optimized Speed AES 

We will compare between the optimized area and optimized speed from the area and 
delay points of view. Taking into consideration that we synthesis both of optimized area 
and optimized speed on the same FPGA, from Table  6–3 and Table  6–5 we can 
summarize the differences in the following points: 

• Area: the ratio between the device utilization in the optimized area (5%, 10%) 
and optimized speed (70%, 75%) AES is (14, 8) for the encryptor and decryptor 
consequently. This large difference in area is mainly due to the difference in the 
used hardware architectures, and secondly is due to the difference between 
algorithm implementation methods. The difference between the encryptor and 
decryptor for each approach is mainly due to the difference in the used key 
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expansion hardware architecture, and secondly is due to the difference between 
direct and inverse transformations.  

• Clock Frequency: The optimized area maximum frequency is (129.989, 
124.863 MHz) for the encryptor and decryptor consequently, while the 
optimized speed maximum frequency is (222.7, 180.414 MHz) for the encryptor 
and decryptor consequently. The difference between the maximum frequencies 
of the two approaches is due to difference between algorithm implementation 
methods. The difference between the encryptor and decryptor maximum 
frequencies for each approach is due to the difference between direct and 
inverse transformations.  

•  Throughput: The optimized area throughput is (1.664, 1.598 Gbps) for the 
encryptor and decryptor consequently, while the optimized speed throughput is 
(28.51, 23.09 Gbps) for the encryptor and decryptor consequently. The 
difference between the two approaches throughput is due to difference between 
the used hardware architectures. The difference between the encryptor and 
decryptor throughput for each approach is due to the difference between direct 
and inverse transformations. 

6.5.2. Comparison of some Related Work for FPGAs 

The architecture of an AES implementation mainly defines the required hardware 
resources on an FPGA. Additionally, the used synthesis tool and the target device 
influence this result. 

Table  6–6 gives an overview of existing FPGA solutions. Because of the different 
FPGAs, most of the use Xilinx FPGAs, the values have to be seen as a relative 
comparison of resource requirements and data throughput [54]. 

Table  6–6: Comparison between difference FPGA implementations of AES 
Authors  LUTs  Block RAMs Throughput  

[Gbps]  
Chodowiec  222  3  0.166  
Chodowiec  12,600 80  12.16  
Chodowiec  2,057  8  1.265  
Chodowiec  2,507  0  0.414  
Hodjat  9,446  0  21.64  
Hodjat  5,177  84  21.54  
McLoone  2,222  100  7.0  
Pramstaller  1,125  0  0.215  
Rouvroy  146  3  0.358  
Saggese  446  10  1.0  
Saggese  648  10  1.82  
Saggese  2,778  100  8.9  
Saggese  5,810  100  20.3  
Standaert  1,769  0  2.085  
Standaert  15,112 0  18.560  
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Wang  1,857  0  1.604  
Zambreno  387  10  1.41  
Zambreno  1,254  20  4.44  
Zambreno  2,206  50  10.88  
Zambreno  3,766  100  22.93  
Zambreno]  16,938 0  23.57  
Zhang  9,406  0  11.965  
Zhang]  11,022 0  21.556  
Our optimized area 
encryptor 

1468 0 1.664 

Our optimized area 
decryptor 

2752   0 1.598 

Our optimized speed 
encryptor 

18855 200 28.51 

Our optimized speed 
decryptor 

20155 200 23.09 

6.6. AES Crypto Processor 

In this section we will introduce a simple processor that could be used to make the 
interface between the implemented AES encryptor/ decryptor datapaths and other external 
peripheral under the control of an operator. We introduce two modes of operation in the 
AES crypto processor. We called the first mode of operation discrete mode in which all 
the data operations (input, output and processing) could be done by orders from the 
operator. The second mode of operation is called the continuous mode in which the 
operator will only start to get the key and all the consequent operation will be done 
sequentially. We will use the first mode of operation to make the timing simulations (post 
synthesis, post map and post place and route simulations) and practical tests to the 
implemented hardware.  

6.6.1. Crypto Processor Hardware Circuit 

The crypto processor is mainly consists of the following components (Figure  6–18):  

1. Encryptor/ decryptor unit: Any one of the previous implemented encryptors and 
decryptors could be used in the crypto processor. 

2. Input interface unit: It is a serial interface with handshaking between the 
processor and external peripheral which is used to get the 128-bit data input 
(plaintext/ ciphertext) to the encryptor/ decryptor and it is mainly consists of 
serial to parallel shift register which takes data each clock cycle (it will takes 
128 clock cycles to complete the data input to encryptor/ decryptor) and it has 
the start, complete and reset as asynchronous control signals. 

3. Key interface unit: This component is similar to the input interface unit and it is 
used to input the 128-bits key used in encryption/ decryption unit. 

4. Output interface unit: It is a 128-bit parallel to serial converter which is used to 
output the data (ciphertext/ plaintext) serially from the encryptor/ decryptor 
unit. Similar to the input and key interface units, the output interface unit takes 
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128 clock cycles to output the data and it has the start, complete and reset as 
asynchronous control signals. 

5. Control Unit: It is a Moore finite state machine FSM (see Figure  6–19) which 
forms the interface between the operator and all another units in the processor. 
The control unit is used to generate all asynchronous control signals for all units 
in the design. From the Figure  6–19, it is clear that we will use the same states 
in the FSM for both of the two modes (continuous mode with the dotted arrows 
and discrete mode with solid arrows).   

   
     Figure  6–18: AES crypto processor 
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 State 
Signal 

Idle Key Request Input Request Encrypt/ Decrypt Output ready

Request Key 0 1 0 0 0 
Request Input 0 0 1 0 0 
Output Ready 0 0 0 0 1 
Input Key Done 0 0 1 1 1 
Input Data Done 0 0 0 1 1 
Encryption Done 0 0 0 0 1 
Output data done 0 0 0 0 1 
 

 
Figure  6–19: Control Unit FSM 

6.6.2. Crypto Processor Functional Simulation Results  

Figure  6–20 shows the functional simulation for the AES crypto processor with the 
optimized area AES encryptor in the discrete mode of operation. 

 
Figure  6–20: Behavioral simulation of AES crypto processor 
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6.6.3. Crypto Processor Timing Simulation Results 

Figure  6–21 shows the post place and route simulation results (at 10 MHz Clock ) 
which agrees with the functional simulation results and the following message appears on 
the modelsim simulator screen: 

 

 
Figure  6–21: post place and route simulation of AES crypto processor 

Similarly we made the timing simulation for the optimized area decryptor and 
optimized speed encryptor and decryptor and we got results as same as the above 
simulation. 

 

 

 

 

 

 

 

 

** Warning: /X_LATCHE RECOVERY  Low VIOLATION ON SET WITH RESPECT TO CLK; 
#   Expected := 0.606 ns; Observed := 0.072 ns; At : 1.686 ns 
#    Time: 1686 ps  Iteration: 5  Instance: /proc_test/uut/c7_dout_ok_4027 
# ** Failure: Simulation successful (not a failure).  No problems detected. 
#    Time: 50100 ns  Iteration: 0  Process: /proc_test/line__115 File: proc_test.timesim_vhw 



 96 

C h a p t e r  7  

APPLICATIONS OF AES 

In this chapter we present two applications of the AES. The first application is AES 
key wrap standard. The second application is deterministic random bit generator (DRBG) 
based on the AES block cipher. 

7.1. AES Key Wrap 
7.1.1. Introduction 

The rapid growth of information technology that has resulted in significant advances in 
cryptography to protect the integrity and confidentiality of data is astounding. New 
algorithms have been introduced such as the Advanced Encryption Standard (AES) as 
defined in the Federal Information Processing Standard (FIPS) 197 to offer three security 
strengths: 128 bits, 192 bits and 256 bits. The use of AES requires the establishment/ 
wrap of shared keying material in advance. Manual distribution methods such as trusted 
couriers are inefficient and complex. They simply do not scale as the system grows. Key 
establishment/ wrap schemes are required to distribute keys in today’s communication 
systems. Protocols such as S/MIME, SSL and IPSec all use key establishment/ wrap 
schemes. Key establishment/ wrap are fundamental to security that the American National 
Standards Institute (ANSI) and the National Institute of Standards and Technology (NIST) 
are producing standards and recommendations for key establishment/ wrap.  

AES key wrap specification is intended to satisfy the NIST Key Wrap requirement to: 
Design a cryptographic algorithm called a Key Wrap that uses the Advanced Encryption 
Standard (AES) as a primitive to securely encrypt a plaintext key(s) with any associated 
integrity information and data, such that the combination could be longer than the width 
of the AES block size (128-bits). Each ciphertext bit should be a highly non-linear 
function of each plaintext bit and (when unwrapping) each plaintext bit should be a highly 
nonlinear function of each ciphertext bit. It is sufficient to approximate an ideal 
pseudorandom permutation to the degree that exploitation of undesirable phenomena is as 
unlikely as guessing the AES engine key. This key wrap algorithm needs to provide ample 
security to protect keys in the context of prudently designed key management architecture. 

Throughout this section, any data being wrapped will be referred to as the key data. It 
makes no difference to the algorithm whether the data being wrapped is a key; in fact 
there is often good reason to include other data with the key, to wrap multiple keys 
together, or to wrap data that isn’t strictly a key. So, the term “key data” is used broadly to 
mean any data being wrapped, but particularly keys, since this is primarily a key wrap 
algorithm. The key used to do the wrapping will be referred to as the key encryption key 
(KEK). In this document a KEK can be any valid key supported by the AES codebook. 
That is, a KEK can be a 128-bit key, a 192-bit key, or a 256-bit key [55]. 
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7.1.2. Overview 

Symmetric key algorithms may be used to wrap (i.e., encrypt) keying material using a 
key-wrapping key (also known as a key encrypting key). The wrapped keying material 
can then be stored or transmitted securely. Unwrapping the keying material requires the 
use of the same key-wrapping key that was used during the original wrapping process.  
Key wrapping differs from simple encryption in that the wrapping process includes an 
integrity feature. During the unwrapping process, this integrity feature detects accidental 
or intentional modifications to the wrapped keying material. The AES key wrap is 
designed to wrap or encrypt key data. The key wrap operates on blocks of 64 bits. Before 
being wrapped, the key data is parsed into n blocks of 64 bits. 

The only restriction the key wrap algorithm places on n is that n is at least two. (For 
key data with length less than or equal to 64 bits, the constant field used in this 
specification and the key data form a single 128-bit codebook input making this key wrap 
unnecessary.) It is recognized that n ≤ 4 will accommodate all supported AES key sizes. 
However, other cryptographic values often need to be wrapped. One such value is the 
seed of the random number generator for DSS. This seed value requires n > 4. 
Undoubtedly other values require this type of protection. Therefore, no upper bound is 
imposed on n. The AES key wrap can be configured to use any of the three key sizes 
supported by the AES codebook. The choice of a key size affects the overall security 
provided by the key wrap, but it does not alter the description of the key wrap algorithm. 
Therefore, in the description that follows, the key wrap will be described generically; i.e. 
no key size will be specified for the KEK. 

7.1.3. Key Wrapping Algorithm 

The specification of the key wrap algorithm requires the use of the AES codebook. The 
next three sections will describe the key wrap algorithm, the key unwrap algorithm, and 
the inherent data integrity check. 

7.1.3.1. Key Wrap 

The inputs to the key wrapping process are the KEK and the plaintext to be wrapped. 
The plaintext consists of n 64-bit blocks, containing the key data being wrapped. The key 
wrapping process is described below. 
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Figure  7–1 shows the motion of key wrap algorithm. 

 
Figure  7–1: Motion of key wrap algorithm 

An alternative description of the key wrap involves indexing rather than shifting. This 
approach allows you to calculate the wrapped key in place, avoiding the rotation in the 
previous description. This produces identical results and is more easily implemented in 
software. 



 99

 

7.1.3.2. Key Unwrap 

The inputs to the unwrap process are the KEK and (n + 1) 64-bit blocks of ciphertext 
consisting of previously wrapped key. It returns n blocks of plaintext consisting of the n 
64-bit blocks of the decrypted key data. 

 

Figure  7–2 shows the Motion of key unwrap algorithm 
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Figure  7–2: Motion of key unwrap algorithm 

The key unwrap algorithm can also be specified as an index based operation, allowing 
the calculations to be carried out in place. Again, this produces the same results as the 
register shifting approach 

 

7.1.3.3. Key Data Integrity—the Initial Value 

The initial value (IV) refers to the value assigned to A0 in the first step of the wrapping 
process. This value is used to obtain an integrity check on the key data. In the final step of 
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the unwrapping process, the recovered value of 0 A is compared to the expected value of 
A0. If there is a match, the key is accepted as valid, and it is returned by the unwrapping 
algorithm. If there is not a match, then the key is not accepted as valid, and the 
unwrapping algorithm returns an error. 

The exact properties achieved by this integrity check depend on the definition of the 
initial value. Different applications may call for somewhat different properties; for 
example, whether there is need to determine the integrity of key data throughout its 
lifecycle or just when it is unwrapped. This specification defines a default initial value 
that supports integrity of the key data during the period it is wrapped. Provision is also 
made to support alternative initial values, if called for in other NIST publications on key 
management. 

The default initial value (IV) is defined to be the hexadecimal constant, A = IV 
= A6A6A6A6A6A6A6A6. The use of a constant as the IV supports a strong integrity 
check on the key data during the period that it is wrapped. If unwrapping produces 
A0= A6A6A6A6A6A6A6A6, then the chance that the key data is corrupt is 2-64. If 
unwrapping produces A0≠ A6A6A6A6A6A6A6A6, then the key unwrap algorithm must 
return an error and not return any key data. 

When the key wrap is used as part of a larger key management protocol or system, the 
desired scope for data integrity may be more than just the key data or the desired duration 
for more than just the period that it is wrapped. Also, if the key data is not just an AES 
key, it may not always be a multiple of 64 bits. Alternative definitions of the initial value 
can be used to address such problems. NIST will define alternative initial values in future 
key management publications as needed. In order to accommodate a set of alternatives 
that may evolve over time, key wrap implementations that are not application-specific will 
require some flexibility in the way that the initial value is set and tested. 

7.2. Hardware Implementation of AES Key Wrap 

7.2.1. Hardware Architecture 

The key wrap/ unwrap algorithm shown in Figure  7–1 and Figure  7–2 uses the 128 bit 
AES encryptor/ decryptor with feedback. In our design of the AES key wrap/ unwrap 
algorithm we will use the loop unrolled architecture for both cipher/ decipher and key 
expansion  (shown in Figure  7–3, Figure  7–4) which achieves the largest throughput in 
feedback modes. The key wrap/ unwrap top entity is shown in Figure  7–5. 
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Figure  7–3 : Loop Unrolled Architecture 

 

 
Figure  7–4: Key Expansion Architectur 

 

 
Figure  7–5: Key wrap/ unwrap top level entity 

7.2.2. Functional Simulation Results 

Figure  7–6 and Figure  7–7 shows the functional simulation results of the AES key 
wrap/ unwrap algorithm for the test vector data given in the NIST specification [55].   

 
Figure  7–6: Functional simulation results of key wrap algorithm 
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Figure  7–7: Functional simulation of key unwrap algorithm  

7.2.3. Hardware Implementation Results 

Table  7–1 shows the Implementation results of the key wrap/ unwrap algorithm. It is clear 
that loop unrolled architecture consumes area less than optimized speed (pipelined 
architecture) and it yields a throughput more than optimized area (basic architecture). The 
key wrap area and throughput differs from the key unwrap area and throughput due to the 
difference in the algorithms of the encryptor and decryptor. 

 
Table  7–1: Implementation results of the key wrap/ unwrap algorithm 
 Key wrap Key unwrap 
Number of Slices 17897  out of  26624    

67% 
17414  out of  26624   

65% 

Number of Slice Flip-Flops 1919  out of  53248     
3% 

1794  out of  53248    
3% 

Number of 4 inputs LUTs  34767  out of  53248    
65% 

33724  out of  53248   
63% 

Minimum Period 
(Maximum Frequency)  

40.080ns  
(24.950MHz) 

48.351ns 
(20.682MHz) 

Minimum input arrival time 
before clock 36.873ns 34.630ns 

Maximum output required 
time after clock 3.921ns 3.921ns 

 
128 24.95 3.194

1
MHzKey WrapThroughput Gbps×

= =  

128 20.682 2.65
1

MHzKey UnwrapThroughput Gbps×
= =  

7.3. DRBGs Based on AES Block Cipher 

Random number generators (RNGs) are required for the generation of keying material 
(e.g., keys and initialization vectors (IVs)) [58]. There are two classes of RNGs: 
deterministic and non-deterministic. Deterministic Random bit Generators (DRBGs), 
sometimes called deterministic random number generators or pseudorandom number 
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generators, use cryptographic algorithms to generate random numbers. Non-Deterministic 
Random Bit Generators (NDRBGs), sometimes called true RNGs, produce output that is 
dependent on some unpredictable physical source that is outside human control, for 
example, radioactive decay or a true noise hardware randomizer. 

There are two fundamentally different strategies for generating random bits. One 
strategy is to produce bits non-deterministically, where every bit of output is based on a 
physical process that is unpredictable; this class of random bit generators (RBGs) is 
commonly known as non deterministic random bit generators (NRBGs). The other 
strategy is to compute bits deterministically using an algorithm; this class of RBGs is 
known as Deterministic Random Bit Generators (DRBGs). A block cipher DRBG is based 
on a block cipher algorithm. The block cipher DRBG mechanism specified in this 
Recommendation has been designed to use any Approved block cipher algorithm and may 
be used by consuming applications requiring various security strengths, providing that the 
appropriate block cipher algorithm and key length are used, and sufficient entropy is 
obtained for the seed. 

This section describes two classes of DRBGs based on block ciphers [56]: One class 
uses the block cipher in OFB mode; the other class uses the CTR mode. There are no 
practical security differences between these two DRBGs; CTR mode guarantees that short 
cycles cannot occur in a single output request, while OFB- mode guarantees that short 
cycles will have an extremely low probability. OFB mode makes slightly less demanding 
assumptions on the block cipher, but the security of both DRBGs relates in a very simple 
and clean way to the security of the block cipher in its intended applications. This is a 
fundamental difference between these DRBGs and the DRBGs based on hash functions, 
where the DRBG's security is ultimately based on pseudo randomness properties that don't 
form a normal part of the requirements for hash functions. An attack on any of the hash 
based DRBGs does not necessarily represent a weakness in the hash function; however, 
for these block cipher-based constructions, a weakness in the DRBG is directly related to 
a weakness in the block cipher . 

Specifically, suppose that there is an algorithm for distinguishing the outputs of either 
DRBG from random with some advantage. If that algorithm exists, it can be used to build 
a new algorithm for distinguishing the block cipher from a random permutation, with the 
same time and memory requirements and advantage. 

Because there is no practical security difference between the two classes of block-
cipher based DRBGs, the choice between the two constructions is entirely a matter of 
implementation convenience and performance. An implementation that uses a block 
cipher in OFB, CBC, or full-block CFB mode can easily be used to implement the OFB 
based DRBG construction; an implementation that already supports counter mode can 
reuse that hardware or software to implement the counter-mode DRBG. In terms of 
performance, the CTR-mode construction is more amenable to pipelining and parallelism, 
while the OFB- mode construction seems to require slightly less supporting hardware. 

In this section we will introduce the two DRBGs based on the 128 bit AES block 
cipher (CTR DRBG and OFB DRBG) [57]. 
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7.3.1. DRBG Based on AES in CTR Mode 

Figure  7–8 shows the DRBG based on the AES block cipher in CTR mode [57]. The 
initial 128-bit seed is loaded into the seed register. This seed forms the initial value of the 
counter register. Every clock cycle the counter value is incremented. The counter value is 
loaded into the AES unit and it is encrypted. The encrypted value is the generated random 
number that is written out. Starting form a secure non-repeating initial seed, 2128sequences 
of 128-bit random numbers are generated. Moreover, the throughput rate of the random 
number generation is equal to maximum throughput of the AES algorithm. 

 
Figure  7–8: Counter mode AES DRBG 

7.3.2. DRBG Based on AES in OFB Mode 

Figure  7–9 shows the DRBG based on the AES block cipher in OFB mode [57]. The 
initial 128-bit seed is loaded into the seed register. This seed forms the initial value of the 
encryptor. Every clock cycle the encryptor output is feedback to the input register. The 
input value is loaded into the AES unit and it is encrypted. The encrypted value is the 
generated random number that is written out. Starting form a secure non-repeating initial 
seed, 2128

 sequences of 128-bit random numbers are generated. Moreover, the throughput 
rate of the random number generation is equal to maximum throughput of the AES 
algorithm. 
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Figure  7–9: OFB mode AES DRBG 

7.4. Hardware Implementation of the AES DRBG 
7.4.1. Hardware Architecture 

Any architecture of the AES hardware architectures mentioned in section  4.1.1 could 
be used to implement the DRBG based on the AES CTR mode. We will implement it 
based on the pipelined architecture (Figure  6–13-a) to achieve a high throughput.  

For the DRBG based on the AES in the OFB mode the most suitable architecture is the 
loop unrolled architecture shown in Figure  7–3 which compromise between relatively 
high throughput (higher than basic architecture) and relatively low area (smaller than 
pipelined architecture).  

Figure  7–10 shows the AES based DRBG top level entity for both CTR and OFB 
modes. 

 
Figure  7–10: AES DRBG top level entity 
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7.4.2. Functional Simulation Results 

Figure  7–11 and Figure  7–12 shows the functional simulation results of the AES CTR 
and OFB based DRBGs for the test vector key and initial seed [10]. 

 
Figure  7–11: Functional simulation of the AES CTR DRBG 

 

 
Figure  7–12: Functional simulation of the AES OFB DRBG 

7.4.3. Hardware Implementation Results 

Table  7–2 shows the implementation results of the DRBG based on the AES in CTR and 
OFB modes of operation. It is clear that the CTR DRBG has a high throughput and area 
and the OFB DRBG has area and throughput smaller than the CTR DRBG. We can use on 
of the two DRBGs in the applications required high speed or low area. The difference 
between the two DRBGs is mainly due to the difference of the number of registers between 
pipelined architecture and loop unrolled architecture. 
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Table  7–2: Implementation results of the DRBG based on the AES in CTR and 
OFB modes 

 CTR DRBG OFB DRBG 
Number of Slices 16231  out of  26624    

60% 
17914  out of  26624 

67% 

Number of Slice Flip-Flops 5281  out of  53248     
9% 

1668  out of  53248    
3% 

Number of 4 inputs LUTs  31231  out of  53248    
58% 

34764  out of  53248   
65% 

Minimum Period 
(Maximum Frequency)  

6.732ns  
(148.536MHz) 

39.599ns 
(25.253MHz) 

Minimum input arrival time 
before clock 5.111ns 36.867ns 

Maximum output required 
time after clock 3.921ns 3.935ns 

 
 

128 148.536 19.012
1

MHzCTR DRBG Throughput Gbps×
= =  

  128 25.253 3.232
1

MHzOFB DRBG Throughput Gbps×
= =  

 

 

 

 

 

 

 

  

 

 

 



 109

C h a p t e r  8  

CONCLUSION AND FUTURE WORK 

Cryptography plays an important role in the security of data transmission. Different 
applications of the AES algorithm may require different speed/area trade-offs. Some 
applications, such as smart cards and cellular phones, require small area. Other 
applications, such as WWW servers and ATMs, are speed critical. Some other 
applications, such as digital video recorders, require an optimization of speed/area ratio. 
Various optimizations for implementation are developed to suit the different demands of 
applications. Architectural optimizations make use of duplicating the round units, while 
algorithmic optimizations explore algorithm simplification inside each encryption/ 
decryption round unit. 

In chapter 2 we give a brief introduction to the cryptography and its types. We focus on 
the private key cryptography and its modes of operation. Also, we have introduced a brief 
mathematical background about the finite fields which is used in the AES.  After this, a 
complete explanation of the AES algorithm (cipher, decipher and key expansion 
algorithms) has been introduced.  

In chapter 3 we have introduced the heuristic techniques used in the design of the 
cryptographic substitution boxes (S-boxes). In this chapter, we introduce the 
cryptographic properties of a good Boolean function and S-box (high nonlinearity and low 
autocorrelation). We use heuristic optimization algorithms such as hill climbing, 
simulated annealing, tabu search and genetic algorithms to find a solution for the S-box 
problems and we introduce S-box with good cryptographic properties (compared with the 
recent research results cited in this thesis) which could be used as AES S-box.  

Chapter 4 has explored various Architectural and algorithmic optimization approaches 
for efficient hardware implementations of the AES algorithm. In this chapter, we 
introduce various AES hardware architectures which could be used to meet the various 
implementation goals (area and speed). Also, a full description of the MixColumns 
transformation has been introduced. The implementation of the whole round unit as S-box 
has been covered by this chapter. In addition, the joint implementation issues of the 
encryptor and decryptor are also discussed and compared.  

In Chapter 5, various methods used for efficient hardware implementation of the AES 
S-box have been introduced. In this chapter, we select the look up table method to 
implement an AES S-box with high speed and the finite field arithmetic (mapping from 
GF(28) to GF(24)) to implement an AES S-box with low area.  

The goals of this thesis were to implement a low area and a high speed AES encryptor 
and decryptor using various optimization techniques and to implement AES crypto 
processor with serial interface with external peripherals on FPGA. These goals have been 
met. In chapter 6, optimized area and optimized speed AES encryptor and decryptor and 
AES crypto processor are completed, simulated and verified. The code was written in 
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VHDL’93 and synthesized and verified using the Xilinx ISE 7.1 program and simulated 
using the Modelsim program.  

Optimized area AES (encryptor, decryptor) have been implemented based on the basic 
architecture and it consumes (1468, 2752 Xilinx slices) and operates at (1.664, 1.558 
Gbps). Optimized speed AES (encryptor, decryptor) have been implemented based on the 
basic architecture and it consumes (18855, 20155 Xilinx slices) and operates at (28.51, 
23.09 Gbps), which was greater than other works cited in this thesis. 

In chapter 7 we have been introduced two applications of the AES. The first 
application was the AES key wrap/ unwrap algorithms based on the loop unrolled 
architecture and it consumes (17897, 17414 Xilinx slices) and operates at (3.19, 2.65 
Gbps). The second application was the deterministic random bit generator (DRBG) based 
on the AES in counter (CTR) and output feedback mode (OFB). The CTR DRBG has 
been implemented based on the pipelined architecture and it consumes (16231 Xilinx 
slices) and operates at (19 Gbps).The OFB DRBG has been implemented based on the 
loop unrolled architecture and it consumes (17914 Xilinx slices) and operates at (3.23 
Gbps).                 

There are several opportunities for future work as a result of this thesis: 

1. Improve the cryptographic properties of the S-boxes is an urgent issue. Until now 
all the heuristic optimization methods didn’t reach the desired cryptographic 
properties which are achieved using algebraic methods. Other optimization 
methods and cost functions could be used to improve the cryptographic properties 
of the S-boxes. 

2. For both optimized area and speed AES on FPGA we found that the FPGA routing 
delay plays an important role in the  maximum operating frequency, which could 
be reduced in ASIC design.  

3. Another work that could be done is the study of optimization approaches for the 
implementations supporting multiple key lengths and modes of operation.  

4. For the optimized speed AES, the look up implementation of the whole round unit 
could be applied to reduce the delay caused by the internal transformations.   

5. For the optimized area AES, The joint hardware implementation of AES encryptor 
and decryptor to save the area consumed by separate implementations of encryptor 
and decryptor.  

6. Also we can study other implementation approaches for the SubBytes and 
MixColumns transformations (which consume most of the chip area) to reduce the 
area. 
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 ملخص عربي

 آسب تأييداً واسعاً ليصبح الوسيلة المناسبة لتأمين وهو المعيار الجديد للتشفير و قد  AES نظام التتشفير المتقدم
 مصفوفة قمنا باستعراض طرق و تقنيات تنفيذ نظام التشفير المتقدم علىفي هذه الرسالة . حماية البيانات الرقمية
  S-boxتطوير صناديق التعويضاً قمنا بتقديم طرق الأمثلة المستخدمة في أيض. FPGA البوابات القابلة للبرمجة

الخيارات المتاحة . المستخدمة في نظام التشفير المتقدم و قمنا باقتراح صندوق تعويض جديد ذو خصائص تشفير جيدة
حث بتنفيذ تصميمين مختلفين قمنا في هذا الب. بين السرعة و المساحة الملازمة لتصميم معالج آمن قمنا أيضاً باستعراضها

النظام  و التصميم الثاني معتمد على  الأول معتمد على البنية الأساسية لنظام التشفير المتقدم التصميملنظام التشفير المتقدم
ذو وصلة تسلسلية من الممكن استخدامه مع   لنظام التشقير المتقدم وقمنا بتصميم و تنفيذ معالج امنيالمعماري المنقول

في وضع التغذية أيضا قمنا بتنفيذ تطبيقين مختلفين لنظام التشفير المتقدم . تصميم قمنا بتقديمه لنظام التشفير المتقدمأي 
قمنا في هذه الرسالة بإعطاء نتائج محاآاة و نتائج تنفيذ آاملة لكلٍ تصميم من التصميمات الواردة في الرسالة و . الخلفية

   :لنحو التاليقد قمنا بترتيب هذا البحث على ا

 التطبيقات التي يستخدم فيها و مستلزماتها من في الفصل الأول مقدمة مختصرة عن نظام التشفير المتقدم و
مصفوفات  طرق تنفيذه على آل من البرمجيات و الشرائح الإلكترونية المعدة لغرض محدد و سرعة أو مساحة و

  .البوابات القابلة للبرمجة

 عاماً إلى علم التشفير و أنواعه مع الترآيز على التشفير بمفتاح خاص و أوضاع عمله الفصل الثاني يوفر مدخلاً
  . النظامعن شرحاً مفصلاً لنظام التشفير المتقدم مع خلفية رياضية مختصرة  أيضاًيوفر و 

 الفصل الثالث يناقش الخواص الأمنية الجيدة التي يجب توافرها في صناديق التعويض المستخدمة في نظام
  .التشفير المتقدم و طرق الأمثلة التجريبية المستخدمة لتطوير هذه الخواص لدالة ثنائية واحدة و لصناديق التعويض

هة النظر  يناقش الطرق المختلفة المستخدمة لتنفيذ نظام تشفير متقدم ذو آفاءة عالية من وجالرابعالفصل 
أيضاً قمنا بمناقشة مسألة مشارآة . حيث السرعة و المساحة هي أهداف الأمثلة في هذا الفصلالمعمارية و الوظيفية 

  .الموارد بين آلة التشفير و آلة حل الشفرة

مختلفة لصناديق التعويض و التي تعتبر أآبر وظيفة تستهلك الوقت و  الالتصميمالفصل الخامس يستعرض طرق 
 لطريقة التنفيذ التي قمنا باستخدامها في تصميمنا  مفصلاًاًعرض شرحي ا الفصلهذ .المساحة في نظام التشفير المتقدم

  .لنظام التشفير المتقدم مع عرض مقارنة بين الطرق المختلفة المستخدمة

لنظام التشفير المتقدم ذو المساحة المثلى و نظام التشفير تنفيذ العملي و نتائج المحاآاة ال يقدم الفصل السادس 
السرعة المثلى مستخدمين ما تم عرضه من طرق التصميم الواردة في الفصلين الرابع و الخامس و قمنا بتقديم المتقدم ذو 

أخيراً قمنا بتقديم نتائج المحاآاة و التصميم العملي . مقارنة بين تنفيذنا لنظام التشفير المتقدم و تنفيذات سابقة لنفس النظام
و الذي يمكن استخدامه في الاختبار العملي لأي من ر المتقدم ذو الوصلة التسلسلية للمعالج الأمني القائم على نظام التشفي

  .التصميمات التي قمنا بتنفيذها

الفصل السابع يستعرض تطبيقين لنظام التشفير المتقدم و تصميمهم العملي على مصفوفة البوابات القابلة 
اح نظام التشفير المتقدم والتي يمكن استخدامها لنقل مفتاح التطبيق الأول هو الطريقة المستخدمة لتغطية مفت. للبرمجة

نظام الحلقة المبسطة . الشفرة في قناة اتصال غير مؤمنة و التطبيق الثاني هو مولد الأرفام الثنائية العشوائي المحدد
  .استخدم في تنفيذ نظام التشفير المتقدم في وضع التغذية الخلفية

ديمه في هذه الرسالة مع تصور مستقبلي لما يمكن أن يتم عمله بناءً على هذه  ما تم تقيستعرض الفصل الثامن 
 .الرسالة
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