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Lecture Outline

 Introduction to state estimators/observers

 Open loop vs Closed loop estimators

 Combining regulator with state estimator
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Intro to State estimators / observers

• What we did so far

Plant

(A,B,C,D)
u

y

K

r +

-

x
Closed loop 

system

ഥ𝑁

• Problem is that we have assumed full state feedback which 

means we have full access to the state variables of the system 

from which is evaluated

• This is not true since in reality we only have access to the sensor 

outputs y and not the state variables x

• Could try output feedback but will have less degrees of freedom 

compared to state feedback (cannot control all pole locations 

freely like what we did with K)

u N r Kx
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Intro to State estimators / observers

• The solution to the lack of measurements of x is to use state 

estimator/observer

• A state estimator/observer is a replica of the actual system or 

plant that tries to estimate the true state variables of the system 

from the actual measured output y and provides the estimated 

state vector

• We can then combine the developed estimator together with state 

feedback control to have a realistic method of controlling the 

closed loop poles based on the feedback of estimated state 

variables (more on this later but we will focus on 

estimator alone for the moment)

• Estimation strategies we have in hand

 Open loop (bad strategy as we will see)

 Closed loop

x̂

ˆu  Kx
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Estimator

(A,B,C,D)

Open loop estimator

• Assuming we know the input u and plant matrixes A, B, C, and 

that D = 0

• We can just simulate a replica of the actual plant on say a 

computer and obtain an estimate as follows

x̂

Plant

(A,B,C,D)

xu

y

( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

t t u t

t t u t

 

 

x Ax B

x Ax B

ŷ

x̂
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Open loop estimator

• However we do not know x(0) so how well the above estimator 

works if the initial estimation error is not zero

• Define the estimation error e(t)

( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

t t u t

t t u t

 

 

x Ax B

x Ax B

Dynamic eq. of actual plant

Dynamic eq. of simulated plant 

(estimator)

   

ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

( ) ( )

( ) (0)t

t t t

d
t t t t

dt

t t

t e

 

  



  A

e x x

x x A x x

e Ae

e e

ˆ ˆIf   (0) (0),    ( ) ( )   t t t  x x x x
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Open loop estimator

• Everything looks fine if initial error e(0) = 0

• If e(0) ≠ 0, e(t) as t → ∞ may decay to zero if the eigenvalues of A

have negative real part (if the original plant is stable)

• Since the estimation error is totally dependent on A, this is not a 

good estimation strategy since we cannot control the dynamics of 

the estimation error at all

• We may make use of other available information in building a 

better state estimator (how?  closed loop estimator)

( ) (0)tt e A
e e
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Closed loop estimator

• The idea is to feedback the error in the estimated output, i.e. its 

difference from the actual output of the system which can be 

observed

• L is a selectable gain matrix (similar to K) that will allow us to 

control the dynamics of the estimation error e(t) as will be seen

Estimator

(A,B,C,D)

x̂

Plant

(A,B,C,D)

xu

y

ŷ

+

-

L
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Closed loop estimator

Estimator

(A,B,C,D)

x̂

Plant

(A,B,C,D)

xu

y

ŷ

+

-

L

( ) ( ) ( )t t u t x Ax B Dynamic eq. of actual 

plant

Dynamic eq. of simulated 

plant (estimator) ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )t t u t y t y t   x Ax B L
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Closed loop estimator

( ) ( ) ( )t t u t x Ax B Dynamic eq. of actual 

plant

Dynamic eq. of simulated 

plant (estimator) ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )t t u t y t y t   x Ax B L

( ) ( )

ˆ ˆ( ) ( )

y t t

y t t





Cx

Cx

Output eq. of actual plant

Output  eq. of estimator

   

 

 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )

( )

t t t t t y t y t

t t t

t

     

  

 

e x x A x x L

Ae LC x x

A LC e

• Let’s try to find the dynamics of e(t) with the added feedback to 

the estimator
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Closed loop estimator

 

 

( ) ( )

( ) (0)
t

t t

t e


 

 
A LC

e A LC e

e e

• It is obvious that by choosing a proper gain matrix L, we can 

control the dynamics of the estimation error, i.e. make it go to zero 

fast such that the estimated state variables converge to the actual 

state variables fast enough

• This is all controlled by the eigenvalues of A-LC

   
1

0
n

j

j

s s s



    I A LC

Desired pole locations of state estimator 

where?  we will see later
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Controller and Observer design (Dual problems)

• K and L are chosen to achieve desired pole locations

• Controller and Observer design are called dual problems

• Just like before when the system had to be controllable to find K, 

the system now has to be observable to find L

   
1

0
n

m

m

s s s



    I A LC

Desired pole locations of state estimator

   
1

0
n

j

j

s s s



    I A BK
Controller design

Observer/Estimator design

Desired pole locations closed loop sys

1 nK R

1nL R
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Akermann’s formula for Observer design

  1 0 0 1n desired


T
L O Φ A

• It gives a formal way to obtain L

• Without proof

Observability 

matrix
Desired characteristic 

equation of state 

estimator/observer

• Clearly On needs to be invertible, hence full rank, hence the 

system must be observable in order to be able to find L to place 

the estimator poles freely
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Observer design

For the system with the following matricesExample

 
1 1.5

,     1 0 ,
1 2

 
  

 
A C

• Test observability

• Find L that makes poles of estimator/observer at -3 and -4
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Observer design

For the system with the following matricesSolution

 
1 1.5

,     1 0 ,
1 2

 
  

 
A C

• Test observability

 
1 0

      rank 2     observable
1 1.5

n n
   

       
   

C
O O

CA
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Observer design

For the system with the following matricesSolution

 
1 1.5

,     1 0 ,
1 2

 
  

 
A C

• Find L that makes poles of estimator/observer at -3 and -4

   

    

  

1

1

2

1

2

0

0 1 1.5
1 0 3 4

0 1 2

1 1.5
3 4

1 2

n

m

m

s s s

Ls
s s

Ls

s L
s s

L s



    

     
        

     

   
   

  

I A LC
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Observer design

For the system with the following matricesSolution

 
1 1.5

,     1 0 ,
1 2

 
  

 
A C

• Find L that makes poles of estimator/observer at -3 and -4

  

   

1

2

2 2
1 1 2

1

2

1 1.5
3 4

1 2

3 2 1.5 0.5 7 12

4

2.333

s L
s s

L s

s L s L L s s

L

L

   
   

  

       




MATLAB

Use AT and CT as your A and B in “place” function

L = place(A.’,C.’,desired poles)
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Augmented SS equations

• It is common to augment the estimation error to the original true state 

vector to form the following augmented SS equations representing the 

dynamic behavior of both the Plant and Estimator to facilitate 

simulating both the plant and estimator together

• For a closed loop state estimator

 

 

( ) ( ) ( )

( ) ( )

( ) 0 ( )
( )

( ) 0 ( ) 0

( )
( ) 0

( )

t t u t

t t

t t
u t

t t

t
y t

t

 

 

       
        

       

 
  

 

x Ax B

e A LC e

x A x B

e A LC e

x
C

e



19

Augmented SS equations

• It is common to augment the estimation error to the original true state 

vector to form the following augmented SS equations representing the 

dynamic behavior of both the Plant and Estimator to facilitate 

simulating both the plant and estimator together

• For an open loop state estimator

 

( ) ( ) ( )

( ) ( )

( ) 0 ( )
( )

( ) 0 ( ) 0

( )
( ) 0

( )

t t u t

t t

t t
u t

t t

t
y t

t

 



       
        

       

 
  

 

x Ax B

e Ae

x A x B

e A e

x
C

e



20

Comparison between closed and open loop estimator

For the system with the following matrices and initial 

state vector as well as initial estimated state vector

Example

 
1 1.5 1 0.5 0

ˆ,   ,  1 0 ,   0,    (0) ,     (0)
1 2 0 1 0

        
            

        
A B C D x x

• Use MATLAB to show the state variables versus time together with 

the estimated state variables assuming both an open loop and a 

closed loop estimator (use an input signal and closed loop 

estimator poles of your preference)

• Plot the estimation error in both cases

• Comment on the convergence of both estimators
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Comparison between closed and open loop estimator

For the system with the following matrices and initial 

state vector as well as initial estimated state vector

Example

 
1 1.5 1 0.5 0

ˆ,   ,  1 0 ,   0,    (0) ,     (0)
1 2 0 1 0

        
            

        
A B C D x x
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Comparison between closed and open loop estimator

For the system with the following matrices and initial 

state vector as well as initial estimated state vector

Example

 
1 1.5 1 0.5 0

ˆ,   ,  1 0 ,   0,    (0) ,     (0)
1 2 0 1 0

        
            

        
A B C D x x
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Comparison between closed and open loop estimator

For the system with the following matrices and initial 

state vector as well as initial estimated state vector

Example

 
1 1.5 1 0.5 0

ˆ,   ,  1 0 ,   0,    (0) ,     (0)
1 2 0 1 0

        
            

        
A B C D x x
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Comparison between closed and open loop estimator

For the system with the following matrices and initial 

state vector as well as initial estimated state vector

Example

 
1 1.5 1 0.5 0

ˆ,   ,  1 0 ,   0,    (0) ,     (0)
1 2 0 1 0

        
            

        
A B C D x x
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Combining regulator with state estimator

• Now we will study the performance when combining a regulator 

designed as but implemented asu  Kx

 

 

 

( ) ( ) ( )             plant state equation

ˆ ˆ       ( ) ( )          apply  state feedback  

       ( ) ( ) ( )

       ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

( )

t t u t

t t u

t t t

t t

t t u t t t

t

  

    

  

  

   

 

x Ax B

Ax BKx Kx

Ax BK x e

A BK x BKe

x Ax B LC x x

e A 

 

( )

( ) ( )
         augmented equation

( ) 0 ( )

( )
( ) 0

( )

t

t t

t t

t
y t

t

     
      

     

 
  

 

LC e

x A BK BK x

e A LC e

x
C

e

ˆu  Kx
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Combining regulator with state estimator

• This says that the dynamics of both the state vector of the closed 

loop systems after introducing feedback as well as the 

estimation error are determined by the eigenvalues of Acl

• Since this is a block upper diagonal matrix, its eigenvalues are 

given by

• This means that the poles of the closed loop system are the 

union of the regulator and estimator poles

( ) ( )
         augmented equation

( ) 0 ( )

t t

t t

     
      

     

x A BK BK x

e A LC e

clA

   cls s s      I A I A BK I A LC
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Combining regulator with state estimator

• This also means that you can design the compensator and 

estimator separately just as we did before and then combine 

them (separation principle)

• As a design rule, you should place the estimator poles at >2 the 

real part of the regulator poles (found from transient specs 

required) to ensure the estimator converges fast and hence the 

estimated values used for feedback are good 

( ) ( )
         augmented equation

( ) 0 ( )

t t

t t

     
      

     

x A BK BK x

e A LC e

clA

   cls s s      I A I A BK I A LC
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Combining regulator with state estimator

• The whole system (regulator + estimator) looks like

ˆu  Kx

Estimator

Plant y

L-K

u

y

 



x Ax B

Cx

 ˆ ˆ y   x A LC BK x L
x̂

The full compensator

(Regulator + Estimator)
• Compensator accepts the sensor 

outputs as its inputs and provides at its 

output the actuator input
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Full compensator equations

ˆu  Kx

Estimator

Plant y

L-K

u

y

 



x Ax B

Cx

 ˆ ˆ y   x A LC BK x L
x̂

The full compensator

(Regulator + Estimator)

 

  
1

ˆ ˆ

ˆ

,    ,    

TF of compensator

c c c

y

u

s


   

 

     

    

x A LC BK x L

Kx

A A LC BK B L C K

K I A LC BK L

SS Matrices of compensator


