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Lecture Outline
-
o Dynamic response of SS equations (Transient Solution
Including both homogenous + forced solutions)

o Diagonalization of the system dynamics matrix A
o Going from SS model to TF
o Relationship between poles of TF and eigenvalues of A




State Space Equations (Reminder)
BN

For an n dimensional system with p inputs and m outputs

nx1 nx1 px1  t € R denotes time
. n
— A B « x € R" denotes the state vector

X(t) X(t) +BU (t) * u € RP denotes the input vector

nxn nxp « y € R™ denotes the output vector
mx1 nx1 e« A € R™" denotes the system dynamic matrix
y(t) CX(t) + DU(t) « B € R™*? denotes the input matrix

mxn mxp e C € R™ ™ denotes the output or sensor matrix

« D € R™ P denotes the feedthrough matrix

o For LTI systems, the matrices A,B,C and D are all constant, i.e.
not f(t)

o For time variant systems — A(t), B(t), C(t), D(t)



State Space Equations
-
Problem 2 (from last Lect.): Find the SS formulation for the following
system whose i/o relationship is given by the following Diff. Eq.
V+2y+3y+y=40-U+5U

Y(s) 45° s +5

Answer —
U(s) 34252 +3s+1
B 1
s3 +2s% +3s+1
(%] [0 1 0] MATLAB
X| =2 X2 1=10 0 1 [ABCD] =
Xo =17 3] 713 _2: tf2ss(num,den)
X3 =1 y=[5 -1 4] Note that MATLAB
uses a flipped state
B vector assignment




Solution of SS Equations (Time response)
BN

X(t) = Ax(t) + Bu(t)
When the input Is zero and the system is
- only driven by the initial state variables x(0)

(t) = Ax(t)

Taking the Laplace transform (assume A is constant for LTI system)
sX(s) —x(0) = AX(s)
(sl —A)X(s) =x(0)
X(s) = (sl - A) " x(0)
x(t) = £ 1 {(sl _ A)_l} x(0)



Solution of SS Equations (Time response)
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Solution of SS Equations (Time response)
I

2

. _ 21 3t
..x(t)—(I+At+A o —+ A 3 jx(O)

x(t) = e"\tx(0)
X(t) = ®(t)x(0)

1

State Transition Matrix [ (t) = e/

It gives the updated state variables at time t given the initial state
variables x(0)

Matrix Exponential
in MATLAB

expm(A)




Solution of SS Equations (Time response)
sy
| Property of Matix exponential __

Property of Matrix exponential

ePeB _o(ATB) it AB=BA
A B (A+B)

otherwise e’‘e” =e

1) @) =e"t, @)=

At At At +t The second equality holds
(I)(tl) ' (I)(tZ) =e 1.7 =g ( ! 2) since At, commutes with At,

if ty=—t, =t = @) - D(-t)=e.e A=AV _7

- @®(-t) istheinverse of ®(t) = | ® () = D(~t)




Solution of SS Equations (Time response)
N

Properties of State Transition Matrix

2) s X(tg) =D(tp)x(0) = eAto x(0)
- x(0) = e Aox(tg)
X(t) _ eAtX(O) _ eAte—AtOX(tO) _ eA(t—to)

A(t-t )x(t()) = ®(t - 1p)x(tp)

X(tp)

X(t)=e

3) | ®(tx —19) =D(t, —t1) - P(t —tp)




Solution of SS Equations (Time response)
oyl

4 -5
Compute eAt if Az{ }

S+3
_1 1 s+3 -5
(s1-A) :(5—4)(s+3)+10{ 2 3_4}
- s+3 -5
1 s+3 -5 (s—=2)(s+1) (s—2)(s+1)
232_3_2[ 2 S—JZ 2 s—4
(S—2)(s+1) (s—2)(s+1)




Solution of SS Equations (Time response)

I ———————

Compute eAt if Az{

e = El{(sl - A)_l}

A
2

N

S+3 -5
1| (5=2)(s+1) (s—2)(s+1)
=L
2 s—4
(S—=2)(s+1) (s—2)(s+1)
§e2t_§e—t _§eZt+5et
|37 3 37 3
22t 2.t 2.2t O
| 3 3

/

s+1

/

s+1

MATLAB

syms t

A=1[4-5;2 -3]
expm(A*t)




Solution of SS Equations (Time response)
oy

0 1
Compute eAt if Az{ }

-1 0



Solution of SS Equations (Time response)
EEH

0 -1
Compute eAt if Az{ }

1 -2



Solution of SS Equations (Time response)
I

X(t) = Ax(t) + Bu(t)

When the input u(t) is non-zero

(t) = Ax(t) + Bu(t)

Taking the Laplace transform (assume A is constant for LTI system)
sX(s) —x(0) = AX(s) + BU(s)
(sl — A)X(s) =x(0) + BU(s)
X(s) = (sl =AY x(0) + (sl - A) " BU(s)
X(t) = L1 {(sl _ A)‘l} X(0) + £2 {(sl )t BU(S)}



Solution of SS Equations (Time response)

T
X(t) = Ax(t) + Bu(t)

When the input u(t) is non-zero

X(t) = [l{(sl —A)‘l}x(O) + E_l{(sl A BU(s)}
x(t) = e”x(0) + e % Bu(t)

t
x(t) = eA'x(0) + [ )Bu(r)de
\ J
— )
Homogenous |
solution Forced solution

t
x(t) = ®(t)x(0) + j ®(t—7)Bu(r)dr
0




Solution of SS Equations (Time response)
N

Solution

Solve the following SS equations, i.e. find x(t), if x(0) =
and the input u(t) is a unit step function

A
2

X(t) =

—5
-3

X(t) +

0
1

o

u(t)

From previous example with the same A, we found the
state transition matrix

2 2
3
2.2
3

At

Substitute In

3
2

3

2 ot

0

t
x(t) = eA'x(0) + [ )Bu(r)dr



Solution of SS Equations (Time response)

D2t 2t 0.2t O .
CEENE I N
_e2t__ —t ——eZt+—e_t
| 3 3 3 3
(| 22t=7) _2~(t-r) 3 2(t-7) O ~(t-7)
0 EeZ(t—T) _ge_(t_f) _geZ(t—T) _|__e_(t_z-)
| 3 3 3 _
§e2t _ge—t ¢ §e2(t—f) _Ee—(t—r)
xt=|3 3 4] 3 dr
geZt _ge_t 0 geZ(t—T) _Ee_(t_f)
| 3 3 1 L3 3 _




I —————

Solution of SS Equations (Time response)

§e2t —ge_t g(eZt—l)—g(l—e_t)
x(0)= 3 3 Tl 2
Lot _ 2t _(62t_1)__(1_e—t)
| 3 3 1 L3 3 |
St 3
=| 2 2
L eZt _1 —




Solution of SS Equations (Time response)
oo

Problem (Method 2)

At 4 -5
Repeat computing € if A= 5 3 In an easier way (use

eigen decomposition to diagonalize A first)
. A 2’[2
M o1 AL+ A §+
1 — -1 —1'[2
=QQ ' +QAQ Tt +QAQIQAQ
1 1 2t% 4
=QQ T +QAIQ T+ QAT Q" ...
_ ARAtA-1
=QeQ Q: Eigen vector matrix

et 1 A: diagonal matrix with
=Q Q
0 e

eigen vaues on main
diagonal




Solution of SS Equations (Time response)

L ————

Problem (Method 2)

At 4 -5
Repeat computing € if A= 5 3 In an easier way (use

eigen decomposition to diagonalize A first)

At
eAtQ|:e 0

0 e’12t
1 o1e® o1 1]
125 1] o e t|l2/5 1

5 5 5
1 1]]e® o0 [[53 -53] |3° 3° ~3° "3°
2/5 1

Q—l




Solution of SS Equations (Time response)
oyl

Interpretation of solution using diagonalization

Back to Homog. Sol. X(t) = eAtX(O)
-t _
X(t) = Q Q™'x(0)
o/nt
i 1| e/t I w{ |
=lvy -+ Vj ; x(0)
R At [ wl
i 1| et | _WIX(O)_
=|vq Vi :
: 1l e’lnt_ _W;]rx(O)_




Solution of SS Equations (Time response)
T

Interpretation of solution using diagonalization

Back to Homog. Sol. X(t) = eAtX(O)

i 2 [ et | _W]TX(O)_
X(t)=| vy - Vp . :

B D g/hnt _W;I]_X(O)_

| eﬂitwir x(0) |

|- D _eﬂntw;'{x(O)_

n
= Zvieﬂit (W;rX(O))



Solution of SS Equations (Time response)
EEH

Interpretation of solution using diagonalization

Back to Homog. Sol. X(t) = eAtX(O)

n
X(t)=>" vie’it (W;rx(O))

=1
« Solution is a linear combination of all individual modes (eﬂit)
 Eigenvalues /; determine the time behavior of each mode

 Eigenvectors v; determine how much each mode impacts each of
the state variables

« Rows of Q1 , denoted by w!, determine how much each initial

i

state variable contribute to each mode

 Benefit of diagonalization or eigen decomposition is to decouple
the modes and write the full time solution as a linear combination
of them

 You can also expect that eigenvalues are related to poles



From SS model to Transfer Function
e

nx1 nx1 px1

X(t) = Ax(t) + Bu(t)
nxn nxp

SS model
mx1 nx1
y(t) = Cx(t) + Du(t)
mxn mxp
N Y (s)

Transfer Function

U(s)



From SS model to Transfer Function
S

X(t) = Ax(t) + Bu(t)
Take LT sX(s)—x(0) = AX(s)+BU(s)
(sI—A)X(s) =x(0)+BU(s)

X(s) = (sl - A) " x(0) + (sl —A) T BU(s) ——

since y(t) = Cx(t) + Du(t)
= Y(s) =CX(s) +DU(s)
Y (s)=CX(s)+DU(s) <

Y(s) :\C(sl —A)‘?x(O) +[C(sl ~A) "B+ D} U(s)
Y | ' J

Initial state response  Trangfer Function Matrix mxp




From SS model to Transfer Function
E

Y(s) =C(sl - A) T x(0) J{C(sl ~A) B+ D} U(s)
To obtain TF, set x(0) =0

Y(s) = [C(sl ~A) B+ D} U(s)

For a SISO system, Y(s) and U(s) are scalars

E=c:(s,| ~A)'B+D
U (s)




From SS model to Transfer Function

T

Find the transfer function of the following state space model

[4 5] [-2
X= X+ u
2 -3 1

y=[-05 1]x
Y6 _csi-aytB4D
U(s)
From a previous example with the same matrix A
- s+3 -5
(s —A)_l _ (s=2)(s+1) (s—-2)(s+1)
2 s—4
(s—2)(s+1) (s—-2)(s+1)




From SS model to Transfer Function
E

543 -5
w:[—O.S 1] (s—2)(s+1) (s—2)(s+1) {—2}
U(s) 2 s—4 1

(s—=2)(s+1) (s—2)(s+1) |
- —25s-1 |
_[-05 1 (s—2)(s+1)
s—8
(5—2)(s+1) |
_25-1.5
(s—=2)(s+1)

We notice that the poles at s = 2,-1 are exactly the eigenvalues of A we found
before




From SS model to Transfer Function

I —————————

Find the transfer function matrix of the following SS model
having 3 inputs and 2 outputs

.14 -5 -2 3 1
X= X+ u
2 -3 1 50

(0.5 1}
y= X

-1 2

You should still find [C(sI —A)™*B+ D] which is a 2x3 matrix

that relates the input and output vectors as follows

Y(s)=|C(sl-A) "B+ D} U(s)

Yi(s)" Uy(s) |
{Yl(s) :[C(SI—A)_lB+D} Uy(s)
- | Us(s) |




From SS model to Transfer Function
o B

Back to SISO case and general TF

Y6 _csi-aytB4D

U (s)

ﬂzcadj(sl -A) 84D

U (s) sI—A
~ Cadj(sl-A)B+D|sI - A
B sl - A

e Clearly the poles of the TF are the values of s that makes IsSI—A| =0
which are the also the eigenvalues of A

 We can easily predict that what was said on poles can be exactly said
on eigenvalues (e.g. the condition of BIBO stability is
Re{eigenvalues} < 0



From SS model to Transfer Function

HW problem

Find two SS representations for the this circuit. Use the underneath two
assignments of state variables

C C,
| [ | [
+ I\ I\ +
Q) WS () * 3o
State variables (15 State variables (2n9)
% : current of left loop e X :inductor current i,
* %, : current of right loop * X, . capacitor voltage v,

Find the relation (transformation P) between the two state vectors in the 15t

and 2" realizations _
X =PX
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