Control Systems And Their Components (EE391)

Lec. 5: State Space Representation and its Dynamic Solution

Wed. March 16th, 2016

Lecture Outline

- Dynamic response of SS equations (Transient Solution including both <u>homogenous + forced</u> solutions)
- Diagonalization of the system dynamics matrix A
- Going from SS model to TF
- Relationship between poles of TF and eigenvalues of A

State Space Equations (Reminder)

For an *n* dimensional system with *p* inputs and *m* outputs

- $t \in \mathbb{R}$ denotes time
- $\mathbf{x} \in \mathbb{R}^n$ denotes the state vector
- $\mathbf{u} \in \mathbb{R}^p$ denotes the input vector
- $\mathbf{y} \in \mathbb{R}^m$ denotes the output vector
- $\mathbf{A} \in \mathbb{R}^{n \times n}$ denotes the system dynamic matrix
- $\mathbf{B} \in \mathbb{R}^{n \times p}$ denotes the input matrix
- $\mathbf{C} \in \mathbb{R}^{m \times n}$ denotes the output or sensor matrix
- $\mathbf{D} \in \mathbb{R}^{m \times p}$ denotes the feedthrough matrix
- For LTI systems, the matrices A,B,C and D are all constant, i.e. not f(t)
- \Box For time variant systems \rightarrow A(t), B(t), C(t), D(t)

State Space Equations

<u>Problem 2 (from last Lect.)</u>: Find the SS formulation for the following system whose i/o relationship is given by the following Diff. Eq.

$$\ddot{y} + 2\ddot{y} + 3\dot{y} + y = 4\ddot{u} - \dot{u} + 5u$$

Answer

$$\frac{Y(s)}{U(s)} = \frac{4s^2 - s + 5}{s^3 + 2s^2 + 3s + 1}$$

$$= \frac{1}{s^3 + 2s^2 + 3s + 1} \cdot \left(4s^2 - s + 5\right) = \frac{Z(s)}{U(s)} \cdot \frac{Y(s)}{Z(s)}$$

$$x_1 = z$$

$$x_2 = \dot{z}$$

$$x_3 = \ddot{z}$$

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$x_{1} = z$$

$$x_{2} = \dot{z}$$

$$x_{3} = \ddot{z}$$

$$y = \begin{bmatrix} 5 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + 0u$$

MATLAB

[ABCD] =tf2ss(num,den)

Note that MATLAB uses a flipped state vector assignment

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

Homogeneous Solution

When the input is zero and the system is only driven by the initial state variables $\mathbf{x}(0)$

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$$

Taking the Laplace transform (assume **A** is constant for LTI system)

$$s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s)$$

$$(s\mathbf{I} - \mathbf{A})\mathbf{X}(s) = \mathbf{x}(0)$$

$$\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}(0)$$

$$\mathbf{x}(t) = \mathcal{L}^{-1}\left\{ (s\mathbf{I} - \mathbf{A})^{-1}\right\}\mathbf{x}(0)$$

$$(s\mathbf{I} - \mathbf{A})^{-1} = \frac{1}{s} \left(\mathbf{I} - \frac{\mathbf{A}}{s}\right)^{-1}$$

$$\therefore \left(\mathbf{I} - \frac{\mathbf{A}}{s}\right)^{-1} = \mathbf{I} + \frac{\mathbf{A}}{s} + \frac{\mathbf{A}^2}{s^2} + \frac{\mathbf{A}^3}{s^3} + \dots$$
 Think Maclaurin Expansion for scalars!!

$$\therefore \mathbf{x}(t) = \mathcal{L}^{-1} \left\{ \frac{\mathbf{I}}{s} + \frac{\mathbf{A}}{s^2} + \frac{\mathbf{A}^2}{s^3} + \frac{\mathbf{A}^3}{s^4} + \dots \right\} \mathbf{x}(0)$$

$$\therefore \mathbf{x}(t) = \left(\mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2!} + \mathbf{A}^3 \frac{t^3}{3!} + \dots \right) \mathbf{x}(0) \qquad \mathcal{L}^{-1} \left\{ \frac{1}{s^{n+1}} \right\} = \frac{1}{n!} t^n$$

$$\therefore \mathbf{x}(t) = \left(\mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2!} + \mathbf{A}^3 \frac{t^3}{3!} + \dots \right) \mathbf{x}(0)$$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0)$$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0)$$

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{x}(0)$$

State Transition Matrix $\Phi(t) = e^{\mathbf{A}t}$

$$\mathbf{\Phi}(t) = e^{\mathbf{A}t}$$

It gives the updated state variables at time t given the initial state variables **x**(0)

> Matrix Exponential in MATLAB expm(A)

Property of Matrix exponential

$$e^{\mathbf{A}}e^{\mathbf{B}} = e^{(\mathbf{A}+\mathbf{B})}$$
 iff $\mathbf{A}\mathbf{B}=\mathbf{B}\mathbf{A}$
otherwise $e^{\mathbf{A}}e^{\mathbf{B}} \neq e^{(\mathbf{A}+\mathbf{B})}$

Try to prove it!!

Properties of State Transition Matrix

1)
$$\Phi(t_1) = e^{\mathbf{A}t_1}, \quad \Phi(t_2) = e^{\mathbf{A}t_2}$$

$$\mathbf{\Phi}(t_1) \cdot \mathbf{\Phi}(t_2) = e^{\mathbf{A}t_1} \cdot e^{\mathbf{A}t_2} = e^{\mathbf{A}(t_1 + t_2)}$$
 The since

The second equality holds since At_1 commutes with At_2

if
$$t_1 = -t_2 = t \implies \mathbf{\Phi}(t) \cdot \mathbf{\Phi}(-t) = e^{\mathbf{A}t} \cdot e^{-\mathbf{A}t} = e^{\mathbf{A}\cdot 0} = \mathbf{I}$$

$$\therefore \Phi(-t) \text{ is the inverse of } \Phi(t) \Rightarrow \Phi^{-1}(t) = \Phi(-t)$$

Properties of State Transition Matrix

3)
$$\Phi(t_2 - t_0) = \Phi(t_2 - t_1) \cdot \Phi(t_1 - t_0)$$

Example

Compute
$$e^{\mathbf{A}t}$$
 if $\mathbf{A} = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix}$

$$e^{\mathbf{A}t} = \mathcal{L}^{-1} \left\{ \left(s\mathbf{I} - \mathbf{A} \right)^{-1} \right\}$$
$$\left(s\mathbf{I} - \mathbf{A} \right) = \begin{bmatrix} s - 4 & 5 \\ -2 & s + 3 \end{bmatrix}$$

$$(s\mathbf{I} - \mathbf{A})^{-1} = \frac{1}{(s-4)(s+3)+10} \begin{bmatrix} s+3 & -5\\ 2 & s-4 \end{bmatrix}$$

$$= \frac{1}{s^2 - s - 2} \begin{bmatrix} s + 3 & -5 \\ 2 & s - 4 \end{bmatrix} = \begin{bmatrix} \frac{s + 3}{(s - 2)(s + 1)} & \frac{-5}{(s - 2)(s + 1)} \\ \frac{2}{(s - 2)(s + 1)} & \frac{s - 4}{(s - 2)(s + 1)} \end{bmatrix}$$

Example

Compute
$$e^{\mathbf{A}t}$$
 if $\mathbf{A} = \begin{vmatrix} 4 & -5 \\ 2 & -3 \end{vmatrix}$

$$e^{\mathbf{A}t} = \mathcal{L}^{-1}\left\{ \left(s\mathbf{I} - \mathbf{A} \right)^{-1} \right\}$$

$$= \mathcal{L}^{-1} \begin{bmatrix} \frac{s+3}{(s-2)(s+1)} & \frac{-5}{(s-2)(s+1)} \\ \frac{2}{(s-2)(s+1)} & \frac{s-4}{(s-2)(s+1)} \end{bmatrix} = \mathcal{L}^{-1} \begin{bmatrix} \frac{5}{3} & \frac{2}{3} & -\frac{5}{3} & \frac{5}{3} \\ \frac{3}{s-2} & \frac{7}{s+1} & \frac{7}{s-2} & \frac{5}{s+1} \\ \frac{2}{3} & \frac{2}{3} & -\frac{7}{3} & \frac{7}{3} & \frac{5}{3} \\ \frac{3}{s-2} & \frac{7}{s+1} & \frac{7}{s-2} & \frac{5}{s+1} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{5}{3}e^{2t} - \frac{2}{3}e^{-t} & -\frac{5}{3}e^{2t} + \frac{5}{3}e^{-t} \\ \frac{2}{3}e^{2t} - \frac{2}{3}e^{-t} & -\frac{2}{3}e^{2t} + \frac{5}{3}e^{-t} \end{bmatrix}$$

MATLAB

syms t A = [4 -5;2 -3] expm(A*t)

Problem

Compute
$$e^{\mathbf{A}t}$$
 if $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

Problem

Compute
$$e^{\mathbf{A}t}$$
 if $\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 1 & -2 \end{bmatrix}$

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

Forced Solution

When the input $\mathbf{u}(t)$ is non-zero

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

Taking the Laplace transform (assume **A** is constant for LTI system)

$$s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s)$$

$$\left(s\mathbf{I} - \mathbf{A}\right)\mathbf{X}(s) = \mathbf{x}(0) + \mathbf{B}\mathbf{U}(s)$$

$$\mathbf{X}(s) = \left(s\mathbf{I} - \mathbf{A}\right)^{-1}\mathbf{x}(0) + \left(s\mathbf{I} - \mathbf{A}\right)^{-1}\mathbf{B}\mathbf{U}(s)$$

$$\mathbf{x}(t) = \mathcal{L}^{-1}\left\{\left(s\mathbf{I} - \mathbf{A}\right)^{-1}\right\}\mathbf{x}(0) + \mathcal{L}^{-1}\left\{\left(s\mathbf{I} - \mathbf{A}\right)^{-1}\mathbf{B}\mathbf{U}(s)\right\}$$

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

Forced Solution

When the input **u**(t) is non-zero

$$\mathbf{x}(t) = \mathcal{L}^{-1} \left\{ \left(s\mathbf{I} - \mathbf{A} \right)^{-1} \right\} \mathbf{x}(0) + \mathcal{L}^{-1} \left\{ \left(s\mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{B} \mathbf{U}(s) \right\}$$

$$\mathbf{x}(t) = e^{\mathbf{A}t} \mathbf{x}(0) + e^{\mathbf{A}t} * \mathbf{B} \mathbf{u}(t)$$

$$\mathbf{x}(t) = e^{\mathbf{A}t} \mathbf{x}(0) + \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau$$
Homogenous solution
$$\mathbf{x}(t) = \mathbf{\Phi}(t) \mathbf{x}(0) + \int_{0}^{t} \mathbf{\Phi}(t-\tau) \mathbf{B} \mathbf{u}(\tau) d\tau$$

Example

Solve the following SS equations, i.e. find $\mathbf{x}(t)$, if $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and the input u(t) is a unit step function

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(t)$$

Solution

From previous example with the same **A**, we found the state transition matrix

$$e^{\mathbf{A}t} = \begin{bmatrix} \frac{5}{3}e^{2t} - \frac{2}{3}e^{-t} & -\frac{5}{3}e^{2t} + \frac{5}{3}e^{-t} \\ \frac{2}{3}e^{2t} - \frac{2}{3}e^{-t} & -\frac{2}{3}e^{2t} + \frac{5}{3}e^{-t} \end{bmatrix}$$

<u>Substitute in</u>

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_{0}^{t} e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

$$\mathbf{x}(t) = \begin{bmatrix} \frac{5}{3}e^{2t} - \frac{2}{3}e^{-t} & -\frac{5}{3}e^{2t} + \frac{5}{3}e^{-t} \\ \frac{2}{3}e^{2t} - \frac{2}{3}e^{-t} & -\frac{2}{3}e^{2t} + \frac{5}{3}e^{-t} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$+ \int_{0}^{t} \begin{bmatrix} \frac{5}{3}e^{2(t-\tau)} - \frac{2}{3}e^{-(t-\tau)} & -\frac{5}{3}e^{2(t-\tau)} + \frac{5}{3}e^{-(t-\tau)} \\ \frac{2}{3}e^{2(t-\tau)} - \frac{2}{3}e^{-(t-\tau)} & -\frac{2}{3}e^{2(t-\tau)} + \frac{5}{3}e^{-(t-\tau)} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot 1d\tau$$

$$\mathbf{x}(t) = \begin{bmatrix} \frac{5}{3}e^{2t} - \frac{2}{3}e^{-t} \\ \frac{2}{3}e^{2t} - \frac{2}{3}e^{-t} \end{bmatrix} + \int_{0}^{t} \begin{bmatrix} \frac{5}{3}e^{2(t-\tau)} - \frac{2}{3}e^{-(t-\tau)} \\ \frac{2}{3}e^{2(t-\tau)} - \frac{2}{3}e^{-(t-\tau)} \end{bmatrix} d\tau$$

$$\mathbf{x}(t) = \begin{bmatrix} \frac{5}{3}e^{2t} - \frac{2}{3}e^{-t} \\ \frac{2}{3}e^{2t} - \frac{2}{3}e^{-t} \end{bmatrix} + \begin{bmatrix} \frac{5}{6}(e^{2t} - 1) - \frac{2}{3}(1 - e^{-t}) \\ \frac{1}{3}(e^{2t} - 1) - \frac{2}{3}(1 - e^{-t}) \end{bmatrix}$$
$$= \begin{bmatrix} \frac{5}{2}e^{2t} - \frac{3}{2} \\ e^{2t} - 1 \end{bmatrix}$$

Problem (Method 2)

Repeat computing $e^{\mathbf{A}t}$ if $\mathbf{A} = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix}$ in an easier way (use

eigen decomposition to diagonalize A first)

Solution

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \mathbf{A}^{2} \frac{t^{2}}{2!} + \dots$$

$$= \mathbf{Q}\mathbf{Q}^{-1} + \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1}t + \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1}\mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1} \frac{t^{2}}{2!} + \dots$$

$$= \mathbf{Q}\mathbf{Q}^{-1} + \mathbf{Q}\mathbf{\Lambda}t\mathbf{Q}^{-1} + \mathbf{Q}\mathbf{\Lambda}^{2} \frac{t^{2}}{2!}\mathbf{Q}^{-1} + \dots$$

$$= \mathbf{Q}e^{\mathbf{\Lambda}t}\mathbf{Q}^{-1}$$

$$= \mathbf{Q}\begin{bmatrix} e^{\lambda_{1}t} & 0 \\ 0 & e^{\lambda_{2}t} \end{bmatrix} \mathbf{Q}^{-1}$$
Q: Eigen very diagonal eigen vaue eigen vaue diagonal eigen vaue eigen eigen vaue eigen eigen vaue eigen eig

Q: Eigen vector matrix Λ: diagonal matrix with eigen vaues on main diagonal

Problem (Method 2)

Repeat computing $e^{\mathbf{A}t}$ if $\mathbf{A} = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix}$ in an easier way (use

eigen decomposition to diagonalize A first)

Solution

$$e^{\mathbf{A}t} = \mathbf{Q} \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} \mathbf{Q}^{-1}$$

$$= \begin{bmatrix} 1 & 1 \\ 2/5 & 1 \end{bmatrix} \begin{bmatrix} e^{2t} & 0 \\ 0 & e^{-t} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2/5 & 1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 1 & 1 \\ 2/5 & 1 \end{bmatrix} \begin{bmatrix} e^{2t} & 0 \\ 0 & e^{-t} \end{bmatrix} \begin{bmatrix} 5/3 & -5/3 \\ -2/3 & 5/3 \end{bmatrix} = \begin{bmatrix} \frac{5}{3}e^{2t} - \frac{2}{3}e^{-t} & -\frac{5}{3}e^{2t} + \frac{5}{3}e^{-t} \\ \frac{2}{3}e^{2t} - \frac{2}{3}e^{-t} & -\frac{2}{3}e^{2t} + \frac{5}{3}e^{-t} \end{bmatrix}$$

Interpretation of solution using diagonalization

Back to Homog. Sol.
$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0)$$

$$\mathbf{x}(t) = \mathbf{Q} \begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & e^{\lambda_n t} \end{bmatrix} \mathbf{Q}^{-1} \mathbf{x}(0)$$

$$= \begin{bmatrix} \vdots & & \vdots \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ \vdots & & \vdots \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & & e^{\lambda_n t} \end{bmatrix} \begin{bmatrix} \dots & \mathbf{w}_1^{\mathbf{T}} & \dots \\ & \vdots & \\ \dots & \mathbf{w}_n^{\mathbf{T}} & \dots \end{bmatrix} \mathbf{x}(0)$$

$$= \begin{bmatrix} & & \vdots \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ \vdots & & \vdots \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & & e^{\lambda_n t} \end{bmatrix} \begin{bmatrix} \mathbf{w}_1^{\mathbf{T}} \mathbf{x}(0) \\ & \vdots \\ & \mathbf{w}_n^{\mathbf{T}} \mathbf{x}(0) \end{bmatrix}$$

Interpretation of solution using diagonalization

Back to Homog. Sol.
$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0)$$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0)$$

$$\mathbf{x}(t) = \begin{bmatrix} \vdots \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ \vdots & & \vdots \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} \\ \ddots \\ e^{\lambda_n t} \end{bmatrix} \begin{bmatrix} \mathbf{w}_1^{\mathbf{T}} \mathbf{x}(0) \\ \vdots \\ \mathbf{w}_n^{\mathbf{T}} \mathbf{x}(0) \end{bmatrix}$$

$$= \begin{bmatrix} \vdots & & \vdots \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ \vdots & & \vdots \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} \mathbf{w}_1^{\mathbf{T}} \mathbf{x}(0) \\ \vdots \\ e^{\lambda_n t} \mathbf{w}_n^{\mathbf{T}} \mathbf{x}(0) \end{bmatrix}$$

$$= \sum_{i=1}^n \mathbf{v}_i e^{\lambda_i t} \left(\mathbf{w}_i^{\mathbf{T}} \mathbf{x}(0) \right)$$

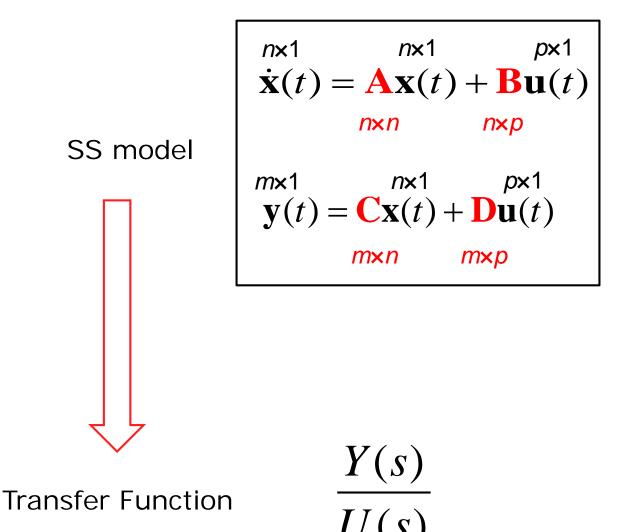
Interpretation of solution using diagonalization

Back to Homog. Sol.

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0)$$

$$\mathbf{x}(t) = \sum_{i=1}^{n} \mathbf{v}_{i} e^{\lambda_{i} t} \left(\mathbf{w}_{i}^{\mathbf{T}} \mathbf{x}(0) \right)$$

- Solution is a linear combination of all individual modes $(e^{\lambda_i t})$
- Eigenvalues λ_i determine the time behavior of each mode
- Eigenvectors \mathbf{v}_i determine how much each mode impacts each of the state variables
- Rows of \mathbf{Q}^{-1} , denoted by $\mathbf{w}_i^{\mathbf{T}}$, determine how much each initial state variable contribute to each mode
- Benefit of diagonalization or eigen decomposition is to decouple the modes and write the full time solution as a linear combination of them
- You can also expect that <u>eigenvalues are related to poles</u>



$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
Take LT $s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s)$

$$(s\mathbf{I} - \mathbf{A})\mathbf{X}(s) = \mathbf{x}(0) + \mathbf{B}\mathbf{U}(s)$$

$$\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}(0) + (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s)$$
since $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$

$$\therefore \mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s)$$

$$\therefore \mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s)$$

$$\mathbf{Y}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}(0) + \left[\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}\right]\mathbf{U}(s)$$
Initial state response Transfer Function Matrix $m \times p$

$$\mathbf{Y}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}(0) + \left[\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}\right]\mathbf{U}(s)$$

To obtain TF, set $\mathbf{x}(0) = 0$

$$\mathbf{Y}(s) = \left[\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}\right]\mathbf{U}(s)$$

For a SISO system, Y(s) and U(s) are scalars

$$\frac{Y(s)}{U(s)} = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Example

Find the transfer function of the following state space model

$$\dot{\mathbf{x}} = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} -2 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} -0.5 & 1 \end{bmatrix} \mathbf{x}$$

Solution

$$\frac{Y(s)}{U(s)} = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

From a previous example with the same matrix A

$$(s\mathbf{I} - \mathbf{A})^{-1} = \begin{vmatrix} \frac{s+3}{(s-2)(s+1)} & \frac{-5}{(s-2)(s+1)} \\ \frac{2}{(s-2)(s+1)} & \frac{s-4}{(s-2)(s+1)} \end{vmatrix}$$

Example
$$\frac{Y(s)}{U(s)} = \begin{bmatrix} -0.5 & 1 \end{bmatrix} \begin{bmatrix} \frac{s+3}{(s-2)(s+1)} & \frac{-5}{(s-2)(s+1)} \\ \frac{2}{(s-2)(s+1)} & \frac{s-4}{(s-2)(s+1)} \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -0.5 & 1 \end{bmatrix} \begin{bmatrix} \frac{-2s-1}{(s-2)(s+1)} \\ \frac{s-8}{(s-2)(s+1)} \end{bmatrix}$$

$$=\frac{2s-7.5}{(s-2)(s+1)}$$

We notice that the poles at s = 2,-1 are exactly the eigenvalues of **A** we found before

HW problem

Find the transfer function matrix of the following SS model having 3 inputs and 2 outputs

$$\dot{\mathbf{x}} = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} -2 & 3 & 1 \\ 1 & -5 & 0 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y} = \begin{bmatrix} -0.5 & 1 \\ -1 & 2 \end{bmatrix} \mathbf{x}$$

Hint

You should still find $[\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}]$ which is a 2x3 matrix that relates the input and output vectors as follows

$$\mathbf{Y}(s) = \left[\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}\right]\mathbf{U}(s)$$

$$\begin{bmatrix} Y_1(s) \\ Y_2(s) \end{bmatrix} = \left[\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}\right] \begin{bmatrix} U_1(s) \\ U_2(s) \\ U_3(s) \end{bmatrix}$$

Back to SISO case and general TF

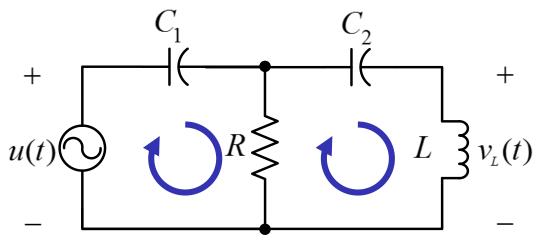
$$\frac{Y(s)}{U(s)} = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

$$\frac{Y(s)}{U(s)} = \mathbf{C} \frac{\operatorname{adj}(s\mathbf{I} - \mathbf{A})}{|s\mathbf{I} - \mathbf{A}|} \mathbf{B} + \mathbf{D}$$
$$= \frac{\mathbf{C}\operatorname{adj}(s\mathbf{I} - \mathbf{A})\mathbf{B} + \mathbf{D}|s\mathbf{I} - \mathbf{A}|}{|s\mathbf{I} - \mathbf{A}|}$$

- Clearly the poles of the TF are the values of s that makes |sI A| = 0 which are the also the eigenvalues of **A**
- We can easily predict that what was said on poles can be exactly said on eigenvalues (e.g. the condition of BIBO stability is Re{eigenvalues} < 0

HW problem

Find two SS representations for the this circuit. Use the underneath two assignments of state variables



State variables (1st)

- \tilde{x}_1 : current of left loop
- \tilde{x}_2 : current of right loop

State variables (2nd)

- x_1 : inductor current i_L
- x_2 : capacitor voltage v_c

Find the relation (transformation **P**) between the two state vectors in the 1st and 2nd realizations

$$\tilde{\mathbf{x}} = \mathbf{P}\mathbf{x}$$