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Lecture Outline

 Discrete SS model

 Solution of discrete SS model (Time evolution)

 Controllability and observability concepts

 Mathematical conditions of controllability and observability
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Discrete SS model

( ) ( ) ( )t t t x Ax Bu
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 Importance is because most analog systems are controlled via 

digital controller

 We will find discrete SS model from the already derived 

continuous time SS model (Differential Eqs → Difference Eqs)

State Transition Matrix
( ) tt e A

Φ
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Discrete SS model
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Discrete SS model

0

0

0 0

0 0

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t

t

t

t t t t t d t d

t t t t d

     

  

     

   

 



x Φ x Φ Bu Φ Bu

Φ x Φ Bu

Now set t0 = kT and t = t0+T where T is the sample duration (discrete)

to see transition of state variables from one sample to the next

( ) ( ) ( ) ( ) ( )

kT T

kT

kT T T kT kT T d  



    x Φ x Φ Bu

Now assume input u is held constant from kT to kT+T
which is called zero order hold (ZOH) → u(kT+T) = u(kT) = u(k)

and use discrete time index by omitting T
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Discrete SS model

0

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

kT T

kT

T

d d

k T k kT T d k

T k v dv k

k k

 

 
     
 
 

 
  
 
 

 





x Φ x Φ Bu

Φ x Φ Bu

A x B u

where

0

( )

( )

T
d

T

d

T e

v dv

 

 
 
 
 


A
A Φ

B Φ B

d

d

T

T

A I A

B B

For small T
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Discrete SS model

Continuous

0

T
d

T
v

d

d

d

e T

e dv T

 

 
 
 
 







A

A

A I A

B B B

C C

D D

( ) ( ) ( )t t t A Bx x u

( ) ( ) ( )t t t y x DuC

n×n n×p

n×1 p×1n×1

m×n m×p

n×1 p×1m×1

( 1) ( ) ( )d dk k k  Bx x uA

( ) ( ) ( )d dk k k y Dx uC

n×n n×p

n×1 p×1n×1

m×n m×p

n×1 p×1m×1

Discrete

MATLAB

[Ad Bd Cd Dd] = 

c2dm(A,B,C,D,T,’zoh’)
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Discrete SS model

• Find the continuous time SS model of the following TF on MATLAB

• Find discrete time equivalent SS model of the above system

MATLAB problem

2

3 2

2 8 6
( )

8 16 6

s s
G s

s s s

 


  

[A B C D] = tf2ss([2 8 6],[1 8 16 6])

[Ad Bd Cd Dd] = c2dm(A,B,C,D,1,’zoh’)
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Solution of discrete SS model

( 1) ( ) ( )d dk k k  Bx x uA

( ) ( ) ( )d dk k k y Dx uC

n×n n×p

n×1 p×1n×1

n×1 p×1m×1

• We are going to call them A, B, C, D for simplicity but it is implicitly

known that they are the discrete equivalent of the cont. time A,B,C,D

• We need to solve this difference equation to obtain x(k) in terms of

x(0) and u

• We can use Z transform similar to what we did with Laplace

transform in the continuous case, or 
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Solution of discrete SS model

  2

2

3 2

1

0

( 1) ( ) ( )

(1) (0) (0)

(2) (1) (1) (0) (0) (1) (0) (0) (1)

(3) (2) (2) (0) (0) (1) (2)

       (0) (0) (1) (2)

( ) (0) ( )
k

k k j

j

k k k

k j 



  

 

       

        

   

 

x Ax Bu

x Ax Bu

x Ax Bu A Ax Bu Bu A x ABu Bu

x Ax Bu A A x ABu Bu Bu

A x A Bu ABu Bu

x A x A Bu
1



Similar to state Transition Matrix in discrete case
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Solution of discrete SS model

1
1

0

( ) (0) ( )
k

k k j

j

k j


 



  x A x A Bu

Problem

• Try to obtain the same formula using Z transform

( 1) ( ) ( )k k k  x Ax Bu

Problem

• Prove that the TF in discrete case is (similar to continuous)

 
1

( ) ( )z z z
   

  
Y C I A B D U
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Controllability concept

Illustrative Example 1 0 3
( ) ( ) ( )

0 2 0
t t u t

   
    

   
x x

• Eigenvalues of A are -1, -2  (poles of the system)

• Let’s find the TF 

 

1( )

1
0

31
2 3

1 0
0

2

6

1

TF s

s

s

s

  

 
   

    
   
  




C I A B D

 ( ) 2 3 ( )y t t x

Where is the other pole at -2  ?
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Controllability concept

Illustrative Example 1 0 3
( ) ( ) ( )

0 2 0
t t u t

   
    

   
x x

• Mathematically, the other pole at -2 got canceled because of the 0 in 

the vector B together with A being diagonal which basically means 

that the dynamics of the second state cannot be controlled by the 

input (the input has not control over x2) or we say x2 is not controllable

• If you dig deep, you can discover what happened to the eigenvalue at 

-2 and why it disappeared in TF

• It is because the system has a zero also at -2 that got canceled with 

the pole at -2 (How can you check zeros??)

 ( ) 2 3 ( )y t t x

0
0

z  


I A B

C D
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1
1
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2 1

( ) ( )
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( 3)

(0)

k
k j
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k

k j

k

k

k


 







 
 

 
        

 
 
 

x A Bu

u

u

B AB A B A B u

u

Controllability definition

1
1

0

( ) (0) ( )
k

k k j

j

k j


 



  x A x A Bu

( 1) ( ) ( )k k k  x Ax Bu

Assume zero initial state vector, x(0) = 0  (will get back to remove 

this assumption later)

n×1

kp×1

n×kp
Controllability matrix Ck

Input vector U is a 
concatenation of k input 

vectors each is p×1



15

1
1

0

2 1

( ) ( )

( 1)

( 2)

( 3)

(0)

k
k j

j

k

k j

k

k

k


 







 
 

 
        

 
 
 

x A Bu

u

u

B AB A B A B u

u

Controllability definition

n×1

kp×1

n×kp
Controllability matrix Ck

Input vector is a 
concatenation of k input 

vectors each is p×1

Controllability Definition

• The system is said to be controllable if there exists a succession of 

inputs that can steer the system from an initial state vector to any desired 

state vector at time k  (Important as will be related to controller design)

• In other words, if there is a solution for U to get any x(k) in the above 

equation (U exists for any left hand side target x(k))

( ) kk x C U
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2 1

( 1)

( 2)

( ) ( 3)

(0)

k

k

k

k k


 
 

 
        

 
 
 

u

u

x B AB A B A B u

u

Controllability mathematical condition

Controllability condition

• For the system to be controllable, Ck must be full rank, i.e. rank(Ck) = n
(why?)

• When Ck is full rank, the range of Ck or its column space is the whole 

space         and not just a subspace in it

• Usually Ck is a fat matrix (columns > rows)

• Need to check if there are n columns of Ck that are independent or 

not (pivot columns)

• If they are independent, this means that a linear combination of the 

columns of Ck spans the entire      and the system is controllable

( ) kk x C U

ℝ𝑛

ℝ𝑛
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Controllability mathematical condition

illustrative example • Check controllability of system whose Ck is

1 2 3

2 4 6
k

 
  
 

C

rank{Ck}= 1   (why?)   col.2 is 2*col. 1 and col.3 is 3*col.1

Formal way is to do Gaussian elimination and 

find the number of pivot columns (to get 

reduced row echelon form)

 

(1)
1 2 3

(2)
2 4 6

(3)

1 2 3
(1) (2) (3)

2 4 6

1
(1) 2 (2) 3 (3)

2

k

u

u

u

u u u

u u u

 
   

    
    

     
       

     

 
    

 

C U

In this case the column 

space of this rank 

deficient matrix is a 

subspace (line) in R2
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Controllability mathematical condition

Note

• When Ck is fat, i.e. when k>n, you do not need to check the rank of Ck

but you can only check the rank of Cn (why? )

• Because from Cayley-Hamilton theorem, every square matrix satisfies 

its own characteristic equation and hence           will depend on 

previous columns 

2 1 1n n k
k

     
C B AB A B A B A B A B

Check only these columns because the rest of the 

columns will be dependent on them (why?)

1 2
1 2 1 0

1 2
1 2 1 0

1 2
1 2 1 0

0

... 0

... 0

...

n n n
n n

n n n
n n

n n n
n n

a a a a

a a a a

a a a a



    
 

 
 

 
 

 

     

     

      

A I

A A A A I

A A A A I

n
A B
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Controllability mathematical condition

Summary

• A system with matrices A,B is said to be controllable if its 

controllability matrix is full rank (same for continuous and discrete)

 

2 1

rank n

n
n

n





    

C

C B AB A B A B

Final Note

• What if initial state vector is not zero?

• Condition of controllability stays the same since going from non-zero 

x(0) to x(k) is just equivalent to going from zero initial state vector to

x(k)-Akx(0)

( ) (0)      ( ) (0)k k
k kk k    x A x C U x A x C U
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Observability concept

Illustrative Example 1 0 3
( ) ( ) ( )

0 2 1
t t u t

   
    

   
x x

• Eigenvalues of A are -1, -2  (poles of the system)

• Let’s find the TF 

 

1( )

1
0

31
2 0

1 1
0

2

6

1

TF s

s

s

s

  

 
   

    
   
  




C I A B D

 ( ) 2 0 ( )y t t x

Same TF as example in slide 12

Where is the other pole at -2  ?
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Observability concept

Illustrative Example 1 0 3
( ) ( ) ( )

0 2 1
t t u t

   
    

   
x x

• Mathematically, the other pole at -2 got canceled because of the 0 in C

together with A being diagonal which basically means that the 

dynamics of the second state cannot be observed at the output or we 

say x2 is not observable

• If you dig deep, you can discover what happened to the eigenvalue at 

-2 and why it disappeared in TF

• It is because the system has a zero also at -2 that got canceled with 

the pole at -2 (How can you check zeros??)

 ( ) 2 0 ( )y t t x

0
0

z  


I A B

C D
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Observability definition

1
1

0

( ) (0) ( )
k

k k j

j

k j


 



  x A x A Bu

( 1) ( ) ( )k k k  x Ax Bu

1
1

0

( ) ( ) ( )

(0) ( ) ( )
k

k k j

j

k k k

j k


 



 

  

y Cx Du

CA x CA Bu Du

Output Equation

Observability Definition

• The system is said to be observable if I can uniquely know the initial 

state variables with the knowledge of the succession of inputs and 

outputs over finite period of time

• Very important concept as it will be related to State observers that will 

estimate the state variables from the knowledge of input and output
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Observability mathematical condition

1
1

0

( ) ( ) ( )

(0) ( ) ( )
k

k k j

j

k k k

j k


 



 

  

y Cx Du

CA x CA Bu Du

2

(0) (0) (0)

(1) (0) (0) (1)

(2) (0) (0) (1) (2)

 

  

   

y Cx Du

y CAx CBu Du

y CA x CABu CBu Du
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Observability mathematical condition

2

(0) (0) (0)

(1) (0) (0) (1)

(2) (0) (0) (1) (2)

 

  

   

y Cx Du

y CAx CBu Du

y CA x CABu CBu Du

2

2 31

0 0 0 0(0) (0)

0 0 0(1) (1)

0 0(0)(2) (2)

( 1) ( 1)k kkk k 

      
      
      
       
      
      
              

C Dy u

CA CB Dy u

CAB CB Dxy CA u

y uCA B CA B CAB CB DCA

mk×n

n ×1

mk×1 pk×1mk×pk

(0)k k Y O x V U
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Observability mathematical condition

(0)

(0)

k k

k k

 

 

Y O x V U

O x Y V U

• If I know the inputs and outputs, I know the right hand side of the 

above equation

• x(0) is uniquely defined only if rank{Ok} = n (Why?)

• If Ok is rank deficient then its nullspace is not empty  say 

• If Ok is a full rank matrix, its nullspace is empty other than zero vector

hence if LHS is known, x(0) is uniquely determined

• Usually Ok is a tall matrix

 kNv O

 (0) (0)k k k   O x O x v Y V U
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Observability mathematical condition

Summary

• A system with matrices A,C is said to be observable if its observability 

matrix is full rank (check only rank of On if k>n)

 

2

1

rank n

n

n

n





 
 
 
 
 
 
 
  

O

C

CA

O CA

CA
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Minimal realization

Illustrative Example

( ) 2 ( ) 3 ( )t t u t  x x

1( )

1
2 3

2

6

1

TF s

s

s

  

  





C I A B D

( ) 2 ( )y t t x

Same TF as example in 

slides 12 and 20

• Both previous examples led to the same TF but one was 

uncontrollable and the second was unobservable

• This realization of the same TF is both controllable and observable 

because it is the minimal realization (only 1 state variable not 2)

A minimal realization is both controllable and observable (without proof)


