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Lecture Outline

 Controllability continued

 Observability concept and mathematical condition

 Open loop SS control (no feedback)

 Obtaining least-norm input using the method of Lagrange 

multipliers 
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Controllability mathematical condition

Note

• When Ck is fat, i.e. when k>n, you do not need to check the rank of Ck

but you can only check the rank of Cn (why? )

• Because from Cayley-Hamilton theorem, every square matrix satisfies 

its own characteristic equation and hence           will depend on 

previous columns 

2 1 1n n k
k

     
C B AB A B A B A B A B

Check only these columns because the rest of the 

columns will be dependent on them (why?)

1 2
1 2 1 0

1 2
1 2 1 0

1 2
1 2 1 0

0

... 0

... 0

...

n n n
n n

n n n
n n

n n n
n n

a a a a

a a a a

a a a a



    
 

 
 

 
 

 

     

     

      

A I

A A A A I

A A A A I

n
A B
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Controllability mathematical condition

Summary

• A system with matrices A,B is said to be controllable if its 

controllability matrix is full rank (same for discrete and continuous)

 

2 1

rank n

n
n

n





    

C

C B AB A B A B

Final Note

• What if initial state vector is not zero?

• Condition of controllability stays the same since going from non-zero 

x(0) to x(k) is just equivalent to going from zero initial state vector to

x(k)-Akx(0)

( ) (0)      ( ) (0)k k
k kk k    x A x C U x A x C U



5

Observability concept

Illustrative Example 1 0 3
( ) ( ) ( )

0 2 1
t t u t

   
    

   
x x

• Eigenvalues of A are -1, -2  (poles of the system)

• Let’s find the TF 

 

1( )

1
0

31
2 0

1 1
0

2

6

1

TF s

s

s

s

  

 
   

    
   
  




C I A B D

 ( ) 2 0 ( )y t t x

Same TF as example in slide 12

Where is the other pole at -2  ?
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Observability concept

Illustrative Example 1 0 3
( ) ( ) ( )

0 2 1
t t u t

   
    

   
x x

• Mathematically, the other pole at -2 got canceled because of the 0 in C

together with A being diagonal which basically means that the 

dynamics of the second state cannot be observed at the output or we 

say x2 is not observable

• If you dig deep, you can discover what happened to the eigenvalue at 

-2 and why it disappeared in TF

• It is because the system has a zero also at -2 that got canceled with 

the pole at -2 (How can you check zeros??)

 ( ) 2 0 ( )y t t x

0
0

z  


I A B

C D
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Observability definition

1
1

0

( ) (0) ( )
k

k k j

j

k j


 



  x A x A Bu

( 1) ( ) ( )k k k  x Ax Bu

1
1

0

( ) ( ) ( )

(0) ( ) ( )
k

k k j

j

k k k

j k


 



 

  

y Cx Du

CA x CA Bu Du

Output Equation

Observability Definition

• The system is said to be observable if I can uniquely know the initial 

state variables with the knowledge of the succession of inputs and 

outputs over finite period of time

• Very important concept as it will be related to State observers that will 

estimate the state variables from the knowledge of input and output
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Observability mathematical condition

1
1

0

( ) ( ) ( )

(0) ( ) ( )
k

k k j

j

k k k

j k


 



 

  

y Cx Du

CA x CA Bu Du

2

(0) (0) (0)

(1) (0) (0) (1)

(2) (0) (0) (1) (2)

 

  

   

y Cx Du

y CAx CBu Du

y CA x CABu CBu Du
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Observability mathematical condition

2

(0) (0) (0)

(1) (0) (0) (1)

(2) (0) (0) (1) (2)

 

  

   

y Cx Du

y CAx CBu Du

y CA x CABu CBu Du

2

2 31

0 0 0 0(0) (0)

0 0 0(1) (1)

0 0(0)(2) (2)

( 1) ( 1)k kkk k 

      
      
      
       
      
      
              

C Dy u

CA CB Dy u

CAB CB Dxy CA u

y uCA B CA B CAB CB DCA

mk×n

n ×1

mk×1 pk×1mk×pk

(0)k k Y O x V U
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Observability mathematical condition

(0)

(0)

k k

k k

 

 

Y O x V U

O x Y V U

• If I know the inputs and outputs, I know the right hand side of the 

above equation

• x(0) is uniquely defined only if rank{Ok} = n (Why?)

• If Ok is rank deficient then its nullspace is not empty  say 

• If Ok is a full rank matrix, its nullspace is empty other than zero vector

hence if LHS is known, x(0) is uniquely determined

• Usually Ok is a tall matrix

 kNv O

 (0) (0)k k k   O x O x v Y V U



11

Observability mathematical condition

Summary

• A system with matrices A,C is said to be observable if its observability 

matrix is full rank (check only rank of On if k>n)

 

2

1

rank n

n

n

n





 
 
 
 
 
 
 
  

O

C

CA

O CA

CA
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Minimal realization

Illustrative Example

( ) 2 ( ) 3 ( )t t u t  x x

1( )

1
2 3

2

6

1

TF s

s

s

  

  





C I A B D

( ) 2 ( )y t t x

Same TF as example in 

slides 12 and 20

• Both previous examples led to the same TF but one was 

uncontrollable and the second was unobservable

• This realization of the same TF is both controllable and observable 

because it is the minimal realization (only 1 state variable not 2)

A minimal realization is both controllable and observable (without proof)
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Open loop SS control

( 1) ( ) ( )k k k  x Ax Bu

Plant

(A,B,C,D)

x

( ) ( ) ( )k k k y Cx Du

u y

• The problem here is to find u that achieves a certain response y

• In SS language, this is exactly equivalent to finding u that gives a 

certain x which in turns gives the desired y

• More specifically, we would like to reach a certain destination 

state vector at time k, x(k) = Xdes and the problem is to find u(k) 

for k = 0 to k-1 that steers the system from x(0) to Xdes

• Clearly this is open loop control since no feedback is used.

• The disadvantage is that we assume perfect knowledge of 

A,B,C,D and noise free operation
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1
1

0

2 1

( ) (0) ( )

( 1)

( 2)

( 3)

(0)

k
k k j

j

k

k j

k

k

k


 





 

 
 

 
        

 
 
 

x A x A Bu

u

u

B AB A B A B u

u

Open loop SS control

1
1

0

( ) (0) ( )
k

k k j

j

k j


 



  x A x A Bu

( 1) ( ) ( )k k k  x Ax Bu

n×1

kp×1

n×kp
Controllability matrix Ck

U

concatenation of k input 
vectors each is p×1

 ( ) (0)k
kk  x A x C U
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Open loop SS control

Without loss of generality, assume zero initial state vector, x(0) = 0

( ) (0)

put   ( )

(0)

k
k

des

k
des k

k

k

 



 

x A x C U

x X

X A x C U

des kX C U

• Assume system is controllable (Ck is full row rank)  will see why

• The goal is to find U to reach Xdes. However, there are infinite 

solutions to the above equation (why??)  because number of 

unknowns > number of equations

• We need to impose a constraint to obtain a unique solution (What 

is the interesting solution we are looking for?)

• We will find the input with minimum energy (least-norm)

kp×1
n×1 n×kp
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Least-norm input

des kX C U

• We will find the input with minimum energy (least-norm)

• Energy is the squared norm of the input obtained as

• The final problem we will solve is formulated as

• We will use a method called Lagrange multipliers to do this 

constrained optimization problem

kp×1
n×1 n×kp

E  T
U U

 minimize          subject to     des kT
U U X C U
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Method of Lagrange multipliers

Illustrative Example

• Minimize x2+y2  subject to the constraint x+y = 1

x+y = 1

If there is no constraint 

min(x2+y2) = 0 at x = 0 and y = 0

Under the constraint

We will increase radius of circle

until it becomes tangent to

the line x+y = 1

This corresponds to the minimum radius

of the circle at which point x and y

will also satisfy the line’s equation (constraint)

Graphically
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Method of Lagrange multipliers

Illustrative Example

• Minimize x2+y2  subject to the constraint x+y = 1

x+y = 1

At the solution, the normal to the circle

is parallel to the normal of the line

How  do we obtain normal 

to any function (can be 

Contour in 2D or surface in 3D

Or anything in higher dimension)?

 Gradient of the function gives the normal

Graphically
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Method of Lagrange multipliers

Illustrative Example

• Minimize x2+y2  subject to the constraint x+y = 1

x+y = 1

At the solution, the normal to the circle

is parallel to the normal of the line

 Gradient of the function gives the normal

Graphically

   2 2x y x y    

Scaling factor is 

Lagrange multiplier

Nabla

operator
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Method of Lagrange multipliers

Illustrative Example

• Minimize x2+y2  subject to the constraint x+y = 1

x+y = 1

   

  

  

  

2 2

2 2

2 2

2 2

0

0

2 0        2

0

2 0        2

x y x y

x y x y

x y x y
x

x x

x y x y
y

y y







 



 

    

    


    



   


    



   
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Method of Lagrange multipliers

Illustrative Example

• Minimize x2+y2  subject to the constraint x+y = 1

x+y = 1

Then find   from the constraint

1

2 2 1       1

1 2, 1 2

x y

x y



  

 

   

  
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Method of Lagrange multipliers

Generally speaking

• Minimize f(x,y) = c1 subject to the constraint g(x,y) = c2

g(x,y) = c2

  0

0        (    is called Lagrangian)

Find   variables in terms of 

Then  find from constraint

f g

J J







  

 
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Least-norm input

• Back to our problem we want to solve

 minimize          subject to     des kT
U U X C U

 kJ  T T
U U λ C U

Take care that we 

have n constraints 

inside Xdes not just one

So we must have n
Lagrange multipliers in 

vector λ

n×1

1×n1×11×1

Lagrangian

must be a 

real scalar

 
 0

0k

J 

  T T
u U U λ C U
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Least-norm input

 
 0

0k

J 

  T T
u U U λ C U

When we do partial derivates, we 

will differentiate with each 

element inside vector u and 

concatenate the results
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Least-norm input

 

2 2 2 2 2 2
1 2 1 2

1

2 1

1

2

(0) (0) ... (0) ... ( 1) ( 1) ... ( 1)

( 1)

( 1) 2 (

( 1)

(0)

(0)

(0)

p p

p

p

u u u u k u k u k

du k

du k u

du k

du

du

du

           

 
 

 
 

 
 
 
 
 

 
 
 
 

   
 
 

 
 
 
 
 
 
 
 
 
 
  

T

T

T

T

T
u

T

T

T

U U

U U

U U

U U

U U

U U

U U

U U

2

1

2

1)

2 ( 1)

2 ( 1)

2

2 (0)

2 (0)

2 (0)

p

p

k

u k

u k

u

u

u

 
 

 
 
 

 
 
  
 
 
 
 
 
 
 
  

U   2 T
u U U U
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Least-norm input

   

1

2

1

2

( 1)

( 1)

( 1)

(0)

(0)

(0)

p

k

p

du k

du k

du k

du

du

du

 
 

 
 

 
 
 
 
 

 
 
 
 

     
 
 

 
 
 
 
 
 
 
 
 
 
  

T

T

T

T T
u u

T

T

T

v U

v U

v U

λ C U v U v

v U

v U

v U

 
1 1 2 2Let                 ( 1) ( 1) ... ( 1) ...

k

k p pv u k v u k v u k



         

T
u

T T T

λ C U

v λ C v U

 k k T T
u λ C U C λ
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 

 

 

min

min

1

1

min

 0

0

1
2 0              

2

Substitue     in the constraint to get 

1
      2

2

k

k k

k des

k k des k k des

k k k des

J





 

  

   



  



T T
u

T T

T T

T T

U U λ C U

U C λ U C λ

U λ

C U X

C C λ X λ C C X

U C C C X

Least-norm input
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 
1

min k k k des


 T T

U C C C X

Least-norm input

Notes

• Above equation gives the least norm input having minimum energy 

which steers the system from the zero initial state vector to Xdes

• In order for to exist, Ck must be full rank, i.e. the system 

must be controllable at the first place (think why this condition must be 

true?)

• If initial state vector was not zero

 
1

k k


T

C C

   
1

min (0)k
k k k des


 T T

U C C C X A x
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 
1

min k k k des


 T T

U C C C X

Least-norm input

Notes

• Minimum energy required to reach Xdes starting at zero initial state 

vector in k steps can be finally calculated as

   

   

 

1 1

min min min

1 1

1

k k k des k k k des

des k k k k k k des

des k k des

E
 

 



 
   

 

 
  

 



T
T T T T T

T
T T T T

T T

U U C C C X C C C X

X C C C C C C X

X C C X
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Least-norm input

Example Plot Emin versus k for the system having

1.75 0.8 1 0 1
, , (0) ,

0.95 0 0 0 1
des

       
          

       
A B X X
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Least-norm input

Example Plot Emin versus k for the system having

As k increases meaning that I give the system all the time it needs 

to reach the destination state vector, the minimum energy required 

to reach Xdes decreases until it converges to a steady state value


