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Lecture Outline
TR
a Controllability continued
o Observability concept and mathematical condition
o Open loop SS control (no feedback)

o Obtaining least-norm input using the method of Lagrange
multipliers



Controllability mathematical condition
HEN

* When C_is fat, i.e. when &>n, you do not need to check the rank of C,
but you can only check the rank of C, (why?)

ck:[B AB A%B .. A"l AMB .. AHB}

\ J

4
Check only these columns because the rest of the

columns will be dependent on them (why?)

« Because from Cayley-Hamilton theorem, every square matrix satisfies
its own characteristic equation and hence A"B will depend on
previous columns A-21|=0

A" va, A" e, A"t 4+ d+ag =0
A" +a, A"t tra LA" 24 +aA+ayl=0
. AN n-1 n-2

AT =—a, A T -a, A T - —aA+ql



Controllability mathematical condition
N

« A system with matrices A,B is said to be controllable if its
controllability matrix is full rank (same for discrete and continuous)

rank{Cp}=n
Cn:[B AB A%B .. A”‘lB}

Final Note

 What if initial state vector is not zero?

x(k)=Ax(0)+C U = x(k)-A*x(0)=C, U

« Condition of controllability stays the same since going from non-zero
X(0) to x(k) is just equivalent to going from zero initial state vector to
X (k)-A*x(0)



Observability concept
HEN

lllustrative Example 1 0 (3

X(t) = 0 o X(t) + . u(t)

y(t)=[2 0]x(t)

« Eigenvalues of A are -1, -2 (poles of the system)
* Let’s find the TF

TF =C(sl —-A)'B+D

~[2 0]

=— Same TF as example in slide 12
Where is the other pole at -2 ?




Observability concept
I

lllustrative Example 1 0 (3

X(t) = 0 o X(t) + . u(t)

y(t)=[2 0]x()

« Mathematically, the other pole at -2 got canceled because of the O in C
together with A being diagonal which basically means that the
dynamics of the second state cannot be observed at the output or we

say X, Is not observable
* If you dig deep, you can discover what happened to the eigenvalue at

-2 and why it disappeared in TF
* |t is because the system has a zero also at -2 that got canceled with

the pole at -2 (How can you check zeros??)
z,l-A -B
C D

=0




Observabillity definition
S
x(k +1) = Ax(k ) + Bu(k )
k -1 .
x(k)=A*x(0)+ Y AT TBuy(j)

Output Equation 1=0

mmm) V(k)=Cx(k)+Du(k)

k -1 .
-CA* x(0)+ ¥’ cA* I Bu(j)+Du(k)

=0
Observability Definition

 The system is said to be observable if | can uniquely know the initial
state variables with the knowledge of the succession of inputs and
outputs over finite period of time

Very important concept as it will be related to State observers that will
estimate the state variables from the knowledge of input and output




Observability mathematical condition

N
y(k) =Cx(k)+Du(k)
k -1 .
- CA*x(0)+ Y cA* TIBu(j)+Du(k)
i=0
y(0) = Cx(0) + Du(0)
y(1) = CAX(0) + CBu(0) + Du(l)

y(2) = CA%x(0) + CABu(0) + CBu(l) + Du(2)



Observability mathematical condition

y(0) =Cx(0) + Du(0)
y(1) = CAx(0) + CBu(0) + Du(l)

y(2)

vy ]| © D 0 0

y(1) CA CB D 0
y(2) |=| CA? |x(0)+| CAB CB D
y(k=-D] |cakt cAk?B cAk®B ..
mkx1 mkxn mkx pk

Y =0y x(0)+V, U

CA%x(0) + CABU(0) + CBuU(L) + Du(2)

0 e 0
0 e 0
CAB CB D

Cu0)
u(l)
u(2)

_u(k.—l)_



Observability mathematical condition
ol

YZOkX(O)-I-VkU
O x(0)=Y -V, U

« If I know the inputs and outputs, | know the right hand side of the

above equation
* X(0) is uniquely defined only if rank{O} = n (Why?)
« If O, is rank deficient then its nullspace is not empty - say veN (Ok )

Oy X(0) =0y [X(0)+V] =Y-V U

« If O, is a full rank matrix, its nullspace is empty other than zero vector
hence if LHS is known, x(0) is uniquely determined
Usually O, is a tall matrix




Observability mathematical condition
oy 0

« A system with matrices A,C is said to be observabile if its observability
matrix is full rank (check only rank of O, if A>n)

rank{On } =n
P
CA
O, =| CA?




Minimal realization
N

lllustrative Example

%(t) = —2x(t) + 3u (t)
y (t) =2x(t)

TF =C(sl - A)'B+D
1

—2._~ .3
S +2

6 Same TF as example in
s 41 slides 12 and 20
« Both previous examples led to the same TF but one was
uncontrollable and the second was unobservable

 This realization of the same TF is both controllable and observable
because it is the minimal realization (only 1 state variable not 2)

A minimal realization is both controllable and observable (without proof)




Open loop SS control

N
x(k +1) = Ax(k ) + Bu(k)

y(k)=Cx(k)+Du(k)

Plant
U —» (AB,C.D) —» Y
X

« The problem here is to find u that achieves a certain response y

* In SS language, this is exactly equivalent to finding u that gives a
certain x which in turns gives the desired y

« More specifically, we would like to reach a certain destination
state vector at time &, X(k) = X4 and the problem is to find u(4)
for k=0 to A1 that steers the system from x(0) to X<

» Clearly this is open loop control since no feedback is used.

« The disadvantage is that we assume perfect knowledge of
A,B,C,D and noise free operation



Open loop SS control
N
x(k +1) = Ax(k ) +Bu(k)

k-1 .
x(k)=A*x@0)+ ¥ Ak Bug(j)
k k1 J=0
x(k)-A*x(0) = Y A Bu(j)
nx1 j=0 ~
u(k -1) |
uk —2)
:[B AB A .. Ak ‘15} uk =3)| > apx
- ~ J U
1 kp u(0) concatenation of k input
Controllability matrix C, -/ vectors each is px1

x(k) - A¥x(0)=C, U




Open loop SS control

I ————

x(k) - A*x(0)=C, U
put X(K) = Xes

Xqes — A€ x(0)=Cy U

Without loss of generality, assume zero initial state vector, x(0) =0

Xdes =Cx U
nxl1  nxkp
» Assume system is controllable (C, is full row rank) = will see why
* The goal is to find U to reach X ... However, there are infinite
solutions to the above equation (why??) = because number of
unknowns > number of equations
 We need to impose a constraint to obtain a unique solution (What
IS the interesting solution we are looking for?)
« We will find the input with minimum energy (least-norm)

kpx1



Least-norm input
N

Xdes = Ck U

kpx1
nx1  nxkp P

«  We will find the input with minimum energy (least-norm)
« Energy is the squared norm of the input obtained as

E=U"U

« The final problem we will solve is formulated as

minimize  U'U subjectto  Xges =Cy U

 We will use a method called Lagrange multipliers to do this
constrained optimization problem



Method of Lagrange multipliers

lllustrative Example

« Minimize x?+y? subject to the constraint x+y = 1

Graphically

If there IS no constraint
min(x?+y?) =0atx=0andy =0

\A
Under the constraint
We will increase radius of circle ﬁs >
until it becomes tangent to —l-e;( & y
the line x+y = 1 Lo

&)
: .. : Q
This corresponds to the minimum radius ?s»,
of the circle at which point x and y '
will also satisfy the line’s equation (constraint)




Method of Lagrange multipliers

lllustrative Example

« Minimize x?+y? subject to the constraint x+y = 1

Graphically

At the solution, the normal to the circle
IS parallel to the normal of the line

How do we obtain normal +o &y \
to any function (can be Lo

Contour in 2D or surface in 3D N

Or anything in higher dimension)? ”@,

=2 Gradient of the function gives the normal




Method of Lagrange multipliers

lllustrative Example

« Minimize x?+y? subject to the constraint x+y = 1

Graphically

At the solution, the normal to the circle
IS parallel to the normal of the line

4

=2 Gradient of the function gives the nor

?(x2+y2)=?V(x+Y) +‘§<J,e\\o y \

o Xty =1
25
Nabla Scaling factor is <
operator Lagrange multiplier

fz\g\\

ﬂ




Method of Lagrange multipliers

lllustrative Example

« Minimize x?+y? subject to the constraint x+y = 1

V(X?+y*)=AV(x +Y)

V(x*+y?=4A(x +y))=0 \A
:(,?X(xzwz—ﬁ(xw)%O ﬁ% .
2x -1=0 = [x=4/2] t&y \

a 2 2
:E(X +y?-A(x +y))=0

2y —A=0 = |y =1/2




Method of Lagrange multipliers

lllustrative Example

« Minimize x?+y? subject to the constraint x+y = 1

Then find A from the constraint

A
X+y =1 \
A/2+2/2=1 = A=1 ﬁ%
X =Y2,y =12 ) &g \

X+y =1




Method of Lagrange multipliers

Generally speaking

* Minimize f(x,y) = c, subject to the constraint g(x,y) = c,

V(f —Ag)=0 \‘
gxy)=c,

VI =0 (J 1s called Lagrangian)
Find variables in terms of A

>
Then A find from constraint \W Ch




Least-norm input
EEN

« Back to our problem we want to solve

minimize U'TU subjectto  Xges =Cy U
Take care that we
have 1 constraints

Lagrangian  j — UTU — XTCk U inside X .. not just one
must be a T
real scalar 1*1 1x1  1xn ¥ So we must have 7
mel Lagrange multipliers in
vector A
VJ=0

v, (uTu-2Tc, U) -0



Least-norm input
I

VJ=0
v, (UTU 2T, u)=0

When we do partial derivates, we
will differentiate with each
element inside vector u and
concatenate the results




Least-norm input

s 4
UTU=uf(0)+u5(0) +...+uj Q) +...+uf (k ~D+uf(k 1) +...+u (k -1)

- aUTu |
dug (k 1)
ouTu
dup(k =1) | T2ug(k -1)]
: 2, (k ~1)
ouTu :

dup(k -1 2up(k -1)

21 (T R IR £V —> Vu(UTU)=2U

ouTu 24 (0)

du1(0) 2u5(0)
ouTu :
dup(0) | L p(0) |
ouTu

] dup(O) |



Least-norm input

L ——————

v, (xTCk U)

Let vi=aTCy =  vIU=vuik —D)+voupk —1)+.+vpup(k —1) +..
ov'u
dug(k -1)
ov'u
du,(k -1)

puc - |V, (xTck U) -

v, (xTck U) -V, (vTU) T




Least-norm input

T
VJ]=0

v,(uTu-aTc ul)=0

2U-Cir=0 = Ummzéc'er «

Substitue Ui In the constraint to get A
Ck U= Xies

-1
%ckc[xzxdes - xzz(ckc'kr) X jos —

1
T T
Unmin = Cx (Cka ) Xdes




Least-norm input
I

1
T T
Unmin = Cx (Ck Ck ) Xdes

* Above equation gives the least norm input having minimum energy
which steers the system from the zero initial state vector to X«

1 _ .
* In order for (Ck C[) to exist, C, must be full rank, i.e. the system

must be controllable at the first place (think why this condition must be

true?)
* |f initial state vector was not zero

-1
Umin ZCE(Ck CE) (Xdes —Ak X(O))



Least-norm input
N

1
T T
Unmin = Cx (Ck Ck ) Xdes

* Minimum energy required to reach X, starting at zero initial state
vector in ksteps can be finally calculated as

A
-1 1
T T T T T
Emin:UminUmin:{Ck Cka) Xdes} Ck (Cka) Xdes
T l(~ T 47"
:Xdes (Cka)

1
T T
Ck C (Ck Ck ) Xdes

-1
T T
= ><des Ck Ck ) Xdes



Least-norm input
T
Plot £,,, versus k for the system having
1.75 0.8 1 0 1

A= B=| | X(0) =] | Xy =
2095 0 o[ K= g Kdes =]

@ Editor - ChUsers\Mohamed\Dropbox\TeachingyControl Theory Course_3rd year_

= clear all

2 — close all

3

4 - A= [1.75 0.8;-0.95 0]:

== B = [1:0]:

6 — ¥de= = [1:1]:

T - Xinitial = [0:0]:

&

] % calculate controllability matrices
10

11 (= minimumEnergyVect = zeros (49,1);

12

13 = for k = 2:50

14 — Cont = B;

15(= for m = 1:k-1

la — Cont = [Cont A™m*B];

17 — end

18 — Umin = Cont."' * inv(Cont*Cont.') * (Xdes-A"k*Xinitial);:
18 — mninimumEnergyVect (k—-1) = Umin.' * Umnin;
20 — end

21

22 — figure

23 — plot (2:50, minimmEnergyvVect)

24 — vlabel {'Minimum Energy'}

23 — xlabel('k")



Least-norm input
TN

Plot £,,, versus k for the system having

—
(o)) ~ (o] [{=} o
I I I I
| | | |

Minimum Energy

N w i (&)}
I I I I
|

-

| | | | | | | | |
5 10 15 20 25 30 35 40 45 50
k

o

As kincreases meaning that | give the system all the time it needs
to reach the destination state vector, the minimum energy required
to reach X, ., decreases until it converges to a steady state value



